
ELSIROS
Release 0.0.1

Azer Babaev, Egor Davydenko, Ilya Ryakin, Vladimir Litvinenko, Aleksandr Matsun and Ivan Khokhlov

Sep 21, 2021

CONTENTS:

1 ELSIROS Intro 1

2 History of Junior Humanoid Soccer games 3

3 Robot programming hints 15

4 Rules 17

5 Robot Design 33

6 API 39

Python Module Index 59

Index 61

i

ii

CHAPTER

ONE

ELSIROS INTRO

Soccer game of Humanoid robots is becoming popular between teams in education and academic society. This type of
competitions generates many scientific research points. For students in high schools, colleges or universities in general
there are 3 obstacles preventing them to set up and maintain a humanoid robot soccer team:

1. extremely high price of humanoid robots,

2. too complex algorithmic problems to be solved at initial steps of setting robot into game,

3. small number of teams in one geographical location – means every game is possible only together with travelling
to far distance with relatively high travel charges.

All 3 obstacles can be eliminated if teams start their Humanoid Soccer experience from ELSIROS. Following advan-
tages are obtained with using ELSIROS:

1. ELSIROS is free of charge and open source.

2. Most difficult parts of humanoid robot development which are beyond of school or college program like Inverse
Kinematics, walking engine, path planning, detecting of ball and obstacles and localization are provided ready-
made in source codes. Example of playing strategy which proved to be a leading strategy at games of real robots
is provided for study and improvement.

3. In order to participate in competitions or challenges it is not necessary to travel. Participating teams can compile
their source code into executable binary code which is safe against source code leaking and upload to referees
server.

4. Teams don’t suffer from backlashes, mis-tunings, mis-calibrations because models are tuned, calibrated and free
of backlashes.

5. Strategy modules developed by teams will be ready to be used on real robots which teams may decide to build
or to buy from market in future.

6. It is not necessarily powerful servers for running training games, simulation can run even at laptop.

ELSIROS is created by Humanoid Robot Soccer team “Starkit” from MIPT (Moscow) after winning Robocup World
Championship 2021. ELSIROS is free of charge and open-source platform pretending from one side to help new
research groups to enter into Humanoid Soccer Competitions world, from other side to host virtual games. ELSIROS
comprises of following components:

1. Webots simulator (to be downloaded from vendors’ site);

2. Primary robot model, which is a virtual model of existing physical robot – a winner of international humanoid
soccer challenges in 2019, 2020 and 2021 used by team “Robokit”;

3. Soccer simulation environment for simulator;

4. Autonomous/Human referee program and game controller;

5. Robot controller software pack capable to play games;

1

ELSIROS, Release 0.0.1

Teams can participate in competitions with Robokit robot and use it for study of basics of programming of strategy of
soccer game for humanoid robots. This is convenient instrument for study of Artificial Intelligence in schools, colleges
and universities. Programming of robots is supported with Python 3 language. But in case of necessity also C, C++,
Java or MATLAB languages can be used for your convenience

Structure of robot controlling software is built for 4 level of robot developers: Beginner, Medium, Advanced and Expert
level. Beginner level developers can access to programming of strategy.py file with purpose to change current robot
behavior in game play. Initially supplied source code represents strategy of game used by leading Russian team at
National championship 2021. Video of this game can be found under link below:

https://youtu.be/AmfKpkL2MUc

Medium level developers can try to improve launcher.py module. This module stands for detecting game state, player
state and team state, managing players role and their starting positions. Advanced developers can try to modify other
modules of source code which are responsible for inverse kinematics, motion, localization, robots’ path planning.

Expert level developers are allowed to compose their own model of robot and use their own controller software with
or without using source code included into ELSIROS open-source package. In order to be admitted to competition
program team providing virtual model of their own robot design have to be qualified. Main requirement to robot model
is that virtual model and real robot must have the same technical performance in all details. Special requirements to
robots’ PROTO which appear from simulation environment can be sent after special request.

If you are a mentor of potential Humanoid Robot Soccer team you can easily start-up with your team. It is necessary
simply download and install ELSIROS in your computer. There is executable version for Windows 10 or source code
for Linux. Please follow instructions and sample code will play soccer just after installation. Please use your favorite
Python 3 IDE for improving players’ source code and you are ready to Virtual Humanoid Robot Soccer challenges in
simulation. You can train your games at your laptop computer.

2 Chapter 1. ELSIROS Intro

CHAPTER

TWO

HISTORY OF JUNIOR HUMANOID SOCCER GAMES

Known early examples of humanoid robot soccer built and programmed by junior students for Robocup refers to year
2016.

Some attepmts to play soccer by humanoid robot built by team from Israel were made at 2016 - 2018

Teams from Israel and Italy have played first International match as demo game at Robocup-2018 in Montreal

3

ELSIROS, Release 0.0.1

In parallel 2 teams from Tomsk and from Moscow have played first game at Robofinist tournament in St.Petersburg at
2018

Same 2 teams have repeated demo game in Moscow at 2019

4 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

First full function tournament was held in Tomsk-2019 with 3 teams participating in Russian Nathinonal Robocup

5

ELSIROS, Release 0.0.1

6 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

Since 2019 the game was included into program of Robocup Asia - Pacific.

2.1 The field

The field is made from 3mm carpet with total size of 3 x 4 m,

2.1. The field 7

ELSIROS, Release 0.0.1

with goals made from plumbing tubes, colored to yellow ant blue color.

8 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

2.1. The field 9

ELSIROS, Release 0.0.1

2.2 The ball

The ball is orange color sponge ball with 80mm diameter.

2.3 The Robots

Currently 2 types of robots mostly used by teams:

10 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

2.3. The Robots 11

ELSIROS, Release 0.0.1

2.3.1 Bioloid type with added camera head and computer

12 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

2.3.2 Robokit - a robot designed in MIPT with using Kondo servomotors from Japan

Last robot which performed best results in soccer game being champion of Asia-Pacific games of 2019 and 2020 is
used as prototype for virtual model of standart robot in ELSIROS platform.

2.3. The Robots 13

ELSIROS, Release 0.0.1

14 Chapter 2. History of Junior Humanoid Soccer games

CHAPTER

THREE

ROBOT PROGRAMMING HINTS

1. It is not advised to play games between completely equal teams. In most cases you can observe non-interesting
game development with rare goals and useless struggling. Therefore, we include 2 styles of playing algorithms:
normal and old style which was practiced in year 2020.

2. Real Robots use OpenMV H7 smart camera as vision sensor and onboard computing module. This is single
core controller with Micropython bare metal programming. This means that controller is not capable to pro-
vide walking engine and camera vision simultaneously. In order to update information about ball position and
self-localization robot has to stop into stabile stand-up position and move head to various positions to observe
surroundings. During head moving ball position can be red in case if ball is in visible sector of camera. Camera
have 46 degrees of aperture.

3. During observation of surroundings at stand-up position of robot camera catches additional information about
robots’ localization from objects like goal posts, field marking and green field border. The more pictures are
taken the better accuracy of localization.

4. Robot can detect obstacles from vision sensor. Obstacle avoidance algorithm is included into path planning, but
it is not perfect in all aspects. There is not implementation of kicking ball strategy with accounting possible
obstacles at ball path. Detected and updated data about obstacles are stored in list self.glob.obstacles

5. Communication between team members is legal by rules through UDP messages. Communication is not imple-
mented in current game strategy, but it is allowed to be developed by teams. Communication inside team can
help to organize team play. ELSIROS API provides functionality for messaging between team members.

6. Coordinate system of field for purposes of strategy is different from absolute coordinate system of field. For
purpose of strategy own goals are located at part of field with negative X coordinate, opponents’ goals are located
at positive X coordinate. Positive Y coordinate is at left flank of attack, negative Y coordinate is at right flank
of attack. Yaw heading is zero if it is directed from center of own goals to center of opponents’ goals. Yaw
is changed from 0 to math.pi with turning to left from zero direction. Yaw is changed from 0 to -math.pi with
turning from zero direction to right. Z coordinate is directed to up with zero on floor.

7. Normal ‘forward’ player uses predefined strategy formulated by vector matrix. Matrix is coded in file strat-
egy_data.json This file is readable and editable as well as normal text file. There is a dictionary with one key
‘strategy_data’. Value of key ‘strategy_data’ is a list with default number of elements 234. Each element of list
represents rectangular sector of soccer field with size 20cmX20cm. For each sector there assigned a vector rep-
resenting yaw direction of shooting when ball is positioned in this sector. Power of shot is coded by attenuation
value: 1 – standard power, 2 – power reduced 2 times, 3- power reduced 3 times. Each element of list is coded
as follows: [column, row, power, yaw]. Soccer field is split to sectors in 13 rows and 18 columns. Column 0 is
near own goals, column 17 is near opposed goals. Row 0 is in positive Y coordinate, row 12 is in negative Y
coordinate.

15

ELSIROS, Release 0.0.1

1. During game player can take 4 roles: ‘forward’, ‘goalkeeper’, ‘penalty_Shooter’, ‘penlaty_Goalkeeper’.
For each role strategy code is different. Launcher module chooses role of player to launch depending on
number of player and secondary game state. In case if number of player is 1 then appointed role will
be ‘goalkeeper’ or ‘penalty_Goalkeeper’. In case if number of player is other than 1 then appointed role
will be ‘forward’ or ‘penalty_Shooter’. In case if secondary game state is ‘STATE_PENALTYSHOOT’
then player with number 1 will be appointed as ‘penlaty_Goalkeeper’ and player with other number
will be appointed to role ‘penalty_Shooter’. Default public player controller strategy appoints player
role ‘goalkeeper’ to player with number 1 and ‘forward’ to player with number other than 1 in all
other secondary game states. Teams can modify strategy and use various roles depending on secondary
game state. According to current game controller there could be following secondary game states:
STATE_NORMAL=0, STATE_PENALTYSHOOT=1, STATE_OVERTIME=2, STATE_TIMEOUT=3,
STATE_DIRECT_FREEKICK=4, STATE_INDIRECT_FREEKICK=5, STATE_PENALTYKICK=6,
STATE_CORNERKICK=7, STATE_GOALKICK=8, STATE_THROWIN=9, DROPBALL=128, UN-
KNOWN=255

16 Chapter 3. Robot programming hints

17

ELSIROS, Release 0.0.1

CHAPTER

FOUR

RULES

18 Chapter 4. Rules

ELSIROS, Release 0.0.1

19

ELSIROS, Release 0.0.1

20 Chapter 4. Rules

ELSIROS, Release 0.0.1

21

ELSIROS, Release 0.0.1

22 Chapter 4. Rules

ELSIROS, Release 0.0.1

23

ELSIROS, Release 0.0.1

24 Chapter 4. Rules

ELSIROS, Release 0.0.1

25

ELSIROS, Release 0.0.1

26 Chapter 4. Rules

ELSIROS, Release 0.0.1

27

ELSIROS, Release 0.0.1

28 Chapter 4. Rules

ELSIROS, Release 0.0.1

29

ELSIROS, Release 0.0.1

30 Chapter 4. Rules

ELSIROS, Release 0.0.1

31

ELSIROS, Release 0.0.1

32 Chapter 4. Rules

CHAPTER

FIVE

ROBOT DESIGN

Standard robot proto used for simulation is Robokit1.proto. It is designed as virtual copy of real robot. In order to
represent real robot all technical features of virtual model were copied from technical description of real robot including
servo torque, servo speed, servo mass, location of camera, camera resolution, aperture of camera lens, number and
location of accelerometers, weight distribution throughout of body.

33

ELSIROS, Release 0.0.1

Virtual model has 2 IMUs named “imu_head” and “imu_body”. Real robot is capable to recognize coordinate of itself
at soccer field with accuracy ±15cm, it is capable to recognize obstacles and ball. Recognition of distance and course
to ball and obstacles is made through machine vision algorithms. Robot detectds distance and course to object with
accuracy mainly dependent on camera accuracy. Good calibrated robot detects course to object with accuracy ± 0.01
Radian. Accuracy of distance recognition non-linearly depends on distance to object, with best accuracy at minimum
distances which is ± 5mm. Distance measurement accuracy at distance 1m is ± 25mm, at distance 2m is ± 100mm
High accuracy of distance and course measurement are provided due to equipment and smart algotihms used for direct
measurements. Localization on soccer field is provided by measurements of cource and distence to goal posts, field
marking, green field border, odometry, measurement of IMU. All localization data is accumulated with historical data
and processed by patricle filter algorithm in order to achieve better accuracy than measurement of individual object.
Simulation procedure in Webots is orgaised in way when simulation of physics and motion is provided together with
camera image scanning. Procedure of image scanning and transfer to outside from Webots greatly reduces simulation
speed. In order to keep simulation speed at acceptable rate it was decided to skip procedure of scanning images by
camera in simulation and replace it with direct request- report procedure. Following data are reported to Robokit1 robot
from simulation by request: distance and course from robot to ball, distance and course from robot to other players, self

34 Chapter 5. Robot Design

ELSIROS, Release 0.0.1

coordinate and orientation on field. Requested data before reporting to robot are mixed with random values in order
to provide same accuracy which usually real robot detects from camera image. Above procedure is called “blurrer”.
Above procedure provide increasing is simulation speed up to 10 times. This know-how of ELSIROS provides games
to be played at laptop computer with nearly realtime speed.

Below is technical description of real Robokit robot.

35

ELSIROS, Release 0.0.1

36 Chapter 5. Robot Design

ELSIROS, Release 0.0.1

37

ELSIROS, Release 0.0.1

38 Chapter 5. Robot Design

CHAPTER

SIX

API

6.1 SAMPLE_TEAM.Soccer.Motion

6.1.1 Subpackages

SAMPLE_TEAM.Soccer.Motion.motion_slots

6.1.2 Submodules

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq

Module Contents

Functions

uprint(*text)

normalize_rotation(yaw)

steps(motion, x1, y1, u1, x2, y2, u2)

ball_Approach (motion, local, glob, ball_coord)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq.uprint(*text)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq.normalize_rotation(yaw)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq.steps(motion, x1, y1, u1, x2, y2, u2)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq.ball_Approach(motion, local, glob, ball_coord)

39

ELSIROS, Release 0.0.1

SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc

Module Contents

Functions

uprint(*text)

ball_Approach_Calc(glob, ball_coord)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc.uprint(*text)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc.ball_Approach_Calc(glob, ball_coord)

SAMPLE_TEAM.Soccer.Motion.class_Motion

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

This module contains walking engine

Module Contents

Classes

Motion1

class SAMPLE_TEAM.Soccer.Motion.class_Motion.Motion1(glob)

imu_body_yaw(self)

norm_yaw(self, yaw)

quaternion_to_euler_angle(self, quaternion)

play_Soft_Motion_Slot(self, name='')

computeAlphaForWalk(self, sizes, limAlpha, hands_on=True)

activation(self)

walk_Initial_Pose(self)

walk_Cycle(self, stepLength, sideLength, rotation, cycle, number_Of_Cycles)

walk_Final_Pose(self)

kick(self, first_Leg_Is_Right_Leg, small=False)

refresh_Orientation(self)

40 Chapter 6. API

ELSIROS, Release 0.0.1

SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.
The module is designed to provide communication from motion controller to simulation

Module Contents

Classes

Motion_sim

class SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim(glob, robot, gcreceiver, pause,
logger)

Bases: SAMPLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real

game_time(self)

game_time_ms(self)

pause_in_ms(self, time_in_ms)

sim_Trigger(self, time)

wait_for_step(self, step)

imu_activation(self)

read_head_imu_euler_angle(self)

read_imu_body_yaw(self)

falling_Test(self)

send_angles_to_servos(self, angles, use_step_correction=False)

move_head(self, pan, tilt)

simulateMotion(self, number=0, name='')

sim_Get_Ball_Position(self)

sim_Get_Obstacles(self)

sim_Get_Robot_Position(self)

sim_Start(self)

sim_Progress(self, simTime)

6.1. SAMPLE_TEAM.Soccer.Motion 41

ELSIROS, Release 0.0.1

SAMPLE_TEAM.Soccer.Motion.class_Motion_real

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

The module is a part of motion generating functions

Module Contents

Classes

Motion_real

class SAMPLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real(glob)
Bases: SAMPLE_TEAM.Soccer.Motion.class_Motion.Motion1

seek_Ball_In_Pose(self, fast_Reaction_On, penalty_Goalkeeper=False, with_Localization=True)

watch_Ball_In_Pose(self, penalty_Goalkeeper=False)

seek_Ball_In_Frame(self, with_Localization=True)

detect_Ball_Speed(self, with_Localization=False)

see_ball_confirmation(self)

turn_To_Course(self, course, accurate=False)

head_Up(self)

head_Return(self, old_neck_pan, old_neck_tilt)

localisation_Motion(self)

normalize_rotation(self, yaw)

near_distance_omni_motion(self, dist_mm, napravl)

near_distance_ball_approach_and_kick(self, kick_direction, strong_kick=False, small_kick=False)

far_distance_ball_approach(self, ball_coord)

far_distance_plan_approach(self, ball_coord, target_yaw, stop_Over=False)

SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. Module can be used for Inverted Kinematics for legs of Robokit-1 robot. Advantage of module against other
IK implementations is fast and repeatable calculation benchmark. Result is achieved due to mixed analytic/numerical
calculation method. Module is designed for 6 DOF robot leg. From 6 angles one angle is calculated using numerical
iterations, other 5 angles are obtained through polynom roots formula calculation. This way prowides fast benchmark
and repeatability. Algorithm being implemented in C language with integration into firnware of OpenMV is capable to
calculated angles for robot legs within time less than 1ms. Multiple IK solutions are filtered through applying of angle
limits within calculation. This yields less time for calculation. usage: create class Alpha instance and call method
compute_Alpha_v3 with arguments. Returns list of 0, 1 or 2 lists of servo angles. List of 0 elements means that IK
was not solved. List of 1 list means 1 possible solition is detected. List of 2 lists means that plurality of solutions was
not filtered by provided arguments.

42 Chapter 6. API

ELSIROS, Release 0.0.1

Module Contents

Classes

Alpha

Attributes

a5

class SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3.Alpha

compute_Alpha_v3(self, xt, yt, zt, x, y, z, w, sizes, limAlpha)

usage: list: angles = self.compute_Alpha_v3(float: xt, float: yt, float: zt, float: x, float: y, float: z,
float: w, list: sizes, list: limAlpha)

angles: list of floats angles in radians of servos which provide target positioning and orientation of
robots’ foot

xt: target x coordinate of foots’ center point yt: target y coordinate of foots’ center point zt: target z co-
ordinate of foots’ center point x: x coordinate of vector of orientation of foot y: y coordinate of vector
of orientation of foot z: z coordinate of vector of orientation of foot w: rotation in radians of foot around
vector of orientation sizes: list of sizes defining distances between servo axles in biped implementation
limAlpha: list of limits [minimum, maximum] of servomotors measured in number of encoder ticks

of Kondo series 2500 servomotors.

Target coordinates are measured in local robot coordinate system XYZ with ENU orientation. [0,0,0] point
of coordinate system is linked to pelvis of robot. Foot orientation vector has length 1. Base of vector is at
bottom of foot and tip of vector is directed down when foot is on floor.

SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3.a5 = 21.5

SAMPLE_TEAM.Soccer.Motion.path_planning

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A.
Babaev. module can be used for optimized path planing of Robokit-1 robot. usage: create class PathPlan type object
instance and call method path_calc_optimum. Optionally module can be launched stand alone for purpose of tuning
and observing result of path planing. Being launched stand alone module draws soccer field with player (white circle),
ball (orange circle), obstacles (black circles). Circles are movable by mouse dragging. After each stop of mouse new
path is drawing.

6.1. SAMPLE_TEAM.Soccer.Motion 43

ELSIROS, Release 0.0.1

Module Contents

Classes

PathPlan Plans optimized path of humanoid robot from start co-
ordinate to target coordinate.

Glob

Attributes

goalPostRadius

ballRadius

uprightRobotRadius

roundAboutRadiusIncrement

SAMPLE_TEAM.Soccer.Motion.path_planning.goalPostRadius = 0.15

SAMPLE_TEAM.Soccer.Motion.path_planning.ballRadius = 0.1

SAMPLE_TEAM.Soccer.Motion.path_planning.uprightRobotRadius = 0.2

SAMPLE_TEAM.Soccer.Motion.path_planning.roundAboutRadiusIncrement = 0.15

class SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan(glob)
Plans optimized path of humanoid robot from start coordinate to target coordinate. Coordinates are taken together
with orientation. Path is composed from initial arc, final arc and connecting line. Connecting line must be
tangent to arcs. In case of obstacles on path line additional arc is added in order to go around obstacle. Only
one obstacle can be avoided reliably. Avoiding of second obstacle is not guaranteed. Therefore there are used
evaluations of prices of variants of path. The Path with cheaper price is returned. Collision with obstacle in far
distance is cheaper than collision with obstacle in near distance. During Path heuristic various radiuses of arcs
are considered. Arc with zero radius means turning without changing coordinate.

coord2yaw(self, x, y)

intersection_line_segment_and_line_segment(self, x1, y1, x2, y2, x3, y3, x4, y4)
Checks if 2 line segments have common point. :returns: True - if there is common point

False - if not.

x = x1 + (x2 - x1) * t1 t1 - paramentric coordinate y = y1 + (y2 - y1) * t1 x = x3 + (x4 - x3) * t2 t2 -
paramentric coordinate y = y3 + (y4 - y3) * t2 x1 + (x2 - x1) * t1 = x3 + (x4 - x3) * t2 y1 + (y2 - y1) * t1
= y3 + (y4 - y3) * t2 t1 = (x3 + (x4 - x3) * t2 - x1) / (x2 - x1) t1 = (y3 + (y4 - y3) * t2 - y1) / (y2 - y1) y1
+ (y2 - y1) * (x3 + (x4 - x3) * t2 - x1) / (x2 - x1) = y3 + (y4 - y3) * t2 (y2 - y1) * (x4 - x3)/ (x2 - x1) * t2
- (y4 - y3) * t2 = y3 - y1 - (y2 - y1) * (x3 - x1) / (x2 - x1) t2 = (y3 - y1 - (y2 - y1) * (x3 - x1) / (x2 - x1))
/((y2 - y1) * (x4 - x3)/ (x2 - x1) - (y4 - y3)) if t1 == 0:

t2 = (y1 - y3)/ (y4 - y3) t2 = (x1 - x3)/ (x4 - x3)

intersection_line_segment_and_circle(self, x1, y1, x2, y2, xc, yc, R)
Checks if line segment and circle have common points. :returns: True - if there is common point

44 Chapter 6. API

ELSIROS, Release 0.0.1

False - if not.

x = x1 + (x2 - x1) * t t - paramentric coordinate y = y1 + (y2 - y1) * t R**2 = (x - xc)**2 + (y - yc)**2 (x1
+ (x2 - x1) * t - xc)**2 + (y1 + (y2 - y1) * t - yc)**2 - R**2 = 0 ((x2 - x1) * t)**2 + (x1 - xc)**2 + 2 *
(x2 - x1) * (x1 - xc) * t + ((y2 - y1) * t)**2 + (y1 - yc)**2 + 2 * (y2 - y1) * (y1 - yc) * t - R**2 = 0 ((x2 -
x1)**2 + (y2 - y1)**2) * t**2 + (2 * (x2 - x1) * (x1 - xc) + 2 * (y2 - y1) * (y1 - yc)) * t + (x1 - xc)**2 +
(y1 - yc)**2 - R**2 = 0 a * t**2 + b * t + c = 0 a = (x2 - x1)**2 + (y2 - y1)**2 b = 2 * (x2 - x1) * (x1 - xc)
+ 2 * (y2 - y1) * (y1 - yc) c = (x1 - xc)**2 + (y1 - yc)**2 - R**2

intersection_circle_segment_and_circle(self, x1, y1, x2, y2, x0, y0, CW, xc, yc, R)

norm_yaw(self, yaw)

delta_yaw(self, start_yaw, dest_yaw, CW)

path_calc_optimum(self, start_coord, target_coord)
Returns optimized humanoid robot path. usage:

list: dest, list: centers, int: number_Of_Cycles = self.path_calc_optimum(list: start_coord, list:
target_coord) dest: list of destination point coordinates. Each coordinate is list or tuple of floats
[x,y].

Each coordinate is starting or end point of path segment. Path comprises of following
segments: circle segment, line segment, n*(circle segment, line segment), circle segment.
Where n - iterable.

centers: list of coordinates of circle centers of circle segments of path. Each coordinate is list or
tuple of floats [x,y]. number_Of_Cycles: integer which represents price of path. In case if value
is >100 then collision with second obstacle on path

is not verified.

start_coord: list or tuple of floats [x, y, yaw] target_coord: list or tuple of floats [x, y, yaw]

path_calc(self, start_coord, target_coord)

arc_path_external(self, x1, y1, yaw1, x2, y2, yaw2)

check_Obstacle(self, xp1, yp1, xp2, yp2)

check_Limits(self, x1, y1, x2, y2, xp1, yp1, xp2, yp2, xc1, yc1, CW1, xc2, yc2, CW2, dest)

check_Price(self, x1, y1, x2, y2, xp1, yp1, xp2, yp2, xc1, yc1, CW1, xc2, yc2, CW2, dest, centers)

number_Of_Cycles_count(self, dest, centers, yaw1, yaw2)

external_tangent_line(self, start, R1, R2, x1, y1, xc1, yc1, xc2, yc2, CW)

arc_path_internal(self, x1, y1, yaw1, x2, y2, yaw2)

internal_tangent_line(self, start, R1, R2, x1, y1, xc1, yc1, xc2, yc2, CW)

square_equation(self, a, b, c)

class SAMPLE_TEAM.Soccer.Motion.path_planning.Glob

import_strategy_data(self, current_work_directory)

6.1. SAMPLE_TEAM.Soccer.Motion 45

ELSIROS, Release 0.0.1

6.2 SAMPLE_TEAM.Soccer.Localisation

6.2.1 Submodules

SAMPLE_TEAM.Soccer.Localisation.class_Glob

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

This module is used to store variables which are used in many classes

Module Contents

Classes

Glob

class SAMPLE_TEAM.Soccer.Localisation.class_Glob.Glob(simulation, current_work_directory)

import_strategy_data(self, current_work_directory)

SAMPLE_TEAM.Soccer.Localisation.class_Local

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

This module is assisting localization

Module Contents

Classes

Local

class SAMPLE_TEAM.Soccer.Localisation.class_Local.Local(logger, motion, glob,
coord_odometry=[0.0, 0.0, 0.0])

coordinate_fall_reset(self)

coordinate_trust_estimation(self)

normalize_yaw(self, yaw)

correct_yaw_in_pf(self)

coordinate_record(self)

localisation_Complete(self)

group_obstacles(self)

46 Chapter 6. API

ELSIROS, Release 0.0.1

read_Localization_marks(self)

6.3 SAMPLE_TEAM.Soccer.strategy

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. The module is designed for strategy of soccer game for forward and goalkeeper.

6.3.1 Module Contents

Classes

GoalKeeper class GoalKeeper is designed to define goalkeeper's play
according to style developed by

Forward The class Forward is designed for definition of strategy
of play for 'forward' role of player

Forward_Vector_Matrix The class Forward_Vector_Matrix is designed for defi-
nition of strategy of play for 'forward' role of player

Player class Player is designed for implementation of main cy-
cle of player.

class SAMPLE_TEAM.Soccer.strategy.GoalKeeper(logger, motion, local, glob)
class GoalKeeper is designed to define goalkeeper’s play according to style developed by Matvei Ivaschenko -
a student of Phystech Lyceum in 2020. Idea of style was in dividing of home half of shoccer field to 8 sectors
according to distance from home goals. When ball is in 4 sectors closest to goals A1, A2, A3, A4 goalkeeper
attacks ball with purpose transfer it to side of opponent. When ball is in 4 sectors B1, B2, B3, B4 which are in
longer distance from goals goalkeeper just slide to better position from current without attempt to attack ball. In
case if ball didn’t go longer than 1m after kick of goalkeeper, he will undertake another attempt up to 10 times in
total. In case if ball goes to distance longer than 1m or ball can’t be seen by goalkeeper then goalkeeper returns
to center of goals.

turn_Face_To_Guest(self)
The method is designed to define kick direction and load it into self.direction_To_Guest direction is mea-
sured in radians of yaw. After definition of kick direction robot turns to this direction. In case if robots’
own coordinate self.glob.pf_coord shows lication on own half of field i.e. self.glob.pf_coord[0] < 0 then
direction of shooting is 0 if robots’ x coordinate > 0.8 and abs(y coordinate) > 0.6 then direction of kick
is to center of opponents’ goals. if robots’ x < 1.5 and abs(y) < 0.25 kick direction will be to corner of
opponents’ goals, with left or right corner is defined randomly. in all other positions of robot kick direction
is defined as ditection to target point with coordinates x = 0, y = 2.8

goto_Center(self)
Goalkeeper returns to duty position 0.4m in front of own goals. before returning robot checks trustability
of localization. If localization is poor then robot undertake special motions by head and by turning to
goals with purpose to improve localization. In case if distance to duty position is more than 0.5m then
far_distance_plan_approach will be used, else near_distance_omni_motion will be used. after returning to
duty position robot turns to kick direction, for which yaw=0 in front of own goals.

find_Ball(self)
Before using motion method seek_Ball_In_Pose goalkeeper define usage of method in quick mode or in
accurate mode. In case if localization is trustable quick mode is used means fast_Reaction_On=True.
seek_Ball_In_Pose method moves head of robot to 15 positions covering all visible areas in front and
in sides of robot. this way seeking of ball is not single task. Robot improves localization through ob-

6.3. SAMPLE_TEAM.Soccer.strategy 47

ELSIROS, Release 0.0.1

serving localization markers on obtained pictures. In case if fast_Reaction_On=True then observation of
surroundings will be interrupted as soon as ball appear in visible sector. Speed of ball is also detected.

scenario_A1(self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from 0 to
math.pi/4. Supposed that goalkeeper stands on duty position faced to opponents’ goals before seeking ball.
usage:

None: self.scenario_A1(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_A2(self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from
math.pi/4 to math.pi/2. Supposed that goalkeeper stands on duty position faced to opponents’ goals before
seeking ball. usage:

None: self.scenario_A1(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_A3(self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from 0
to -math.pi/4. Supposed that goalkeeper stands on duty position faced to opponents’ goals before seeking
ball. usage:

None: self.scenario_A1(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_A4(self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from -
math.pi/4 to -math.pi/2. Supposed that goalkeeper stands on duty position faced to opponents’ goals before
seeking ball. usage:

None: self.scenario_A1(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_B1(self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from 0 to math.pi/4. Supposed that goalkeeper stands on duty position faced
to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to 0 direction

scenario_B2(self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from 0 to math.pi/4. Supposed that goalkeeper stands on duty position faced

48 Chapter 6. API

ELSIROS, Release 0.0.1

to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to 0 direction

scenario_B3(self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from 0 to math.pi/4. Supposed that goalkeeper stands on duty position faced
to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to 0 direction

scenario_B4(self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from 0 to math.pi/4. Supposed that goalkeeper stands on duty position faced
to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to 0 direction

class SAMPLE_TEAM.Soccer.strategy.Forward(logger, motion, local, glob)
The class Forward is designed for definition of strategy of play for ‘forward’ role of player in year 2020. usage:

Forward(object: motion, object: lical, object: glob)

dir_To_Guest(self)
The method is designed to define kick direction and load it into self.direction_To_Guest, direction is mea-
sured in radians of yaw. In case if robots’ own coordinate self.glob.pf_coord shows lication on own half of
field i.e. self.glob.pf_coord[0] < 0 then direction of shooting is 0 if robots’ x coordinate > 0.8 and abs(y
coordinate) > 0.6 then direction of kick is to center of opponents’ goals. if robots’ x < 1.5 and abs(y) <
0.25 kick direction will be to corner of opponents’ goals, with left or right corner is defined randomly. in
all other positions of robot kick direction is defined as ditection to target point with coordinates x = 0, y =
2.8 returns float: self.direction_To_Guest

turn_Face_To_Guest(self)

class SAMPLE_TEAM.Soccer.strategy.Forward_Vector_Matrix(logger, motion, local, glob)
The class Forward_Vector_Matrix is designed for definition of strategy of play for ‘forward’ role of player in
year 2021. Matrix is coded in file strategy_data.json This file is readable and editable as well as normal text file.
There is a dictionary with one key “strategy_data”. Value of key “strategy_data” is a list with default number
of elements 234. Each element of list represents rectangular sector of soccer field with size 20cmX20cm. For
each sector there assigned a vector representing yaw direction of shooting when ball is positioned in this sector.
Power of shot is coded by attenuation value: 1 – standard power, 2 – power reduced 2 times, 3- power reduced
3 times. Each element of list is coded as follows: [column, row, power, yaw]. Soccer field is split to sectors in
13 rows and 18 columns. Column 0 is near own goals, column 17 is near opposed goals. Row 0 is in positive
Y coordinate, row 12 is in negative Y coordinate. Strategy data is imported from strategy_data.json file into
self.glob.strategy_data list. usage:

Forward_Vector_Matrix(object: motion, object: local, object: glob)

dir_To_Guest(self)
The method is designed to define kick direction and load it into self.direction_To_Guest. Direction is
measured in radians of yaw. usage:

int: row, int: col = self.dir_To_Guest() row, col - row and column of matrix attributing rectangular
sector of field where ball coorinate self.glob.ball_coord fits.

turn_Face_To_Guest(self)

class SAMPLE_TEAM.Soccer.strategy.Player(logger, role, second_pressed_button, glob, motion, local)
class Player is designed for implementation of main cycle of player. Real robot have 3 programmable buttons.
Combination of button pressing can transmit to programm pressed button code from 1 to 9. At initial button

6.3. SAMPLE_TEAM.Soccer.strategy 49

ELSIROS, Release 0.0.1

pressing role of player is selected. With second pressed button optional playing mode is selected depending
on role. For ‘forward’ and ‘forward_old_style’ role second_pressed_button can take value 1 or value 4. With
value 1 player starts game as kick-off player, with value 4 player stars as non-kick-off player, which means player
starts moving 10 seconds later. For ‘run_test’ role second_pressed_button can take values from 1 or value 9 with
following optional modes: 1 - 10 cycle steps walk forward 2 - 20 cycle side step walk to right 3 - 20 cycle side
step walk to left 4 - 20 cycle steps walk forward 5 - 20 cycle steps with rotation to right side 6 - 20 cycle steps
with rotation to left side 9 - 20 cycle steps of spot walk All modes of run test are used with purpose to calibrate
walking. After calibration is completed results of calibration must be input to file Sim_params.json. Motion
module is used calibration data for planning motions and odometry correction into localization. usage:

Player(str: role, int: second_pressed_button, object: glob, object: motion, object: local)

play_game(self)

rotation_test_main_cycle(self, pressed_button)

run_test_main_cycle(self, pressed_button)
For ‘run_test’ role second_pressed_button can take values from 1 or value 9 with following optional modes:
1 - 10 cycle steps walk forward 2 - 20 cycle side step walk to right 3 - 20 cycle side step walk to left 4 -
20 cycle steps walk forward 5 - 20 cycle steps with rotation to right side 6 - 20 cycle steps with rotation to
left side 9 - 20 cycle steps of spot walk All modes of run test are used with purpose to calibrate walking.
After calibration is completed results of calibration must be input to file Sim_params.json. Motion module
is used calibration data for planning motions and odometry correction into localization. usage:

self.run_test_main_cycle(int: pressed_button)

sidestep_test_main_cycle(self, pressed_button)

norm_yaw(self, yaw)
This module normalizes yaw according to internal rule: -pi <= yaw <= pi usage:

float: yaw = self.norm_yaw(float: yaw) yaw - orientation on horizontal surface in radians,

zero value orientation is directed along X axis

forward_main_cycle(self, pressed_button)
Main cycle method for ‘forward’ role of player. usage:

self.forward_main_cycle(int: pressed_button)

forward_old_style_main_cycle(self, pressed_button)
Main cycle method for ‘forward_old_style’ role of player. usage:

self.forward_main_cycle(int: pressed_button)

goalkeeper_main_cycle(self)
goalkeeper main cycle method is based on vector matrix strategy. Goalkeeper doesn’t leave goals too far.
Supposed that goalkeeper starts game at point on middle of goal line. After 10 seconds from game start
goalkeeper moves to duty position which depends on detected ball position. In case if ball appears in
dangetous position goalkeeper attcks ball.

goalkeeper_old_style_main_cycle(self)
main cycle for old style goalkeeper strategy

penalty_Shooter_main_cycle(self)
main cycle for penalty striker

penalty_Goalkeeper_main_cycle(self)

dance_main_cycle(self)

50 Chapter 6. API

ELSIROS, Release 0.0.1

6.4 SAMPLE_TEAM.launcher_pb

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. The module is designed for strategy of soccer game by forward and goalkeeper.

6.4.1 Module Contents

Functions

init_gcreceiver(team, player, is_goalkeeper) The function creates and object receiver of Game Con-
troller messages. Game Controller messages are broad-
casted to

player_super_cycle(falling, team_id,
robot_color, player_number, SIMULATION, cur-
rent_work_directory, robot, pause, logger)

The function is called player_super_cycle because dur-
ing game player can change several roles. Each role

SAMPLE_TEAM.launcher_pb.init_gcreceiver(team, player, is_goalkeeper)
The function creates and object receiver of Game Controller messages. Game Controller messages are broad-
casted to teams and to referee. Format of messages can be seen in module gamestate.py. Messages from Game
Controller contains Robot info, Team info and Game state info. usage of function:

object: receiver = init_gcreceiver(int: team, int: player, bool: is_goalkeeper)

team - number of team id. For junior competitions it is recommended to use unique id
for team in range 60 - 127

player - number of player displayed at his trunk is_goalkeeper - True if player is appointed to play
role of goalkeeper

SAMPLE_TEAM.launcher_pb.player_super_cycle(falling, team_id, robot_color, player_number,
SIMULATION, current_work_directory, robot, pause,
logger)

The function is called player_super_cycle because during game player can change several roles. Each role ap-
pointed to player put it into cycle connected to playing it’s role. Cycles of roles are defined in strategy.py mod-
ule. player_super_cycle is cycle of cycles. For example player playing role of ‘forward’ can change role to
‘penalty_shooter’ after main times and extra times of game finished. In some situations you may decide to
switch roles between forward player and goalkeeper. Usage:

player_super_cycle(object: falling, int: team_id, str: robot_color, int: player_number, int: SIMULATION,
Path_object: current_work_directory, object: robot, object: pause)

falling - class object which contains int: falling.Flag which is used to deliver information about falling from
low level logic to high level logic. falling.Flag can take 0 - nothing happend, 1 -falling on
stomach, -1 - falling face up, 2 - falling to left, -2 - falling to right, 3 - exit from playing fase

team_id - can take value from 60 to 127 robot_color - can be ‘red’ or ‘blue’ player_number - can be
from 1 to 5, with 1 to be assigned to goalkeeper SIMULATION - used for definition of simulation
enviroment. value 4 is used for Webots simulation,

value 2 is used for playing in real robot

current_work_directory - is Path type object robot - object of class which is used for communication
between robot model in simulation and controller

program. In case of external controller program ‘ProtoBuf’ communication manager is used.
‘ProtoBuf’ - is protocol developed by Google.

6.4. SAMPLE_TEAM.launcher_pb 51

ELSIROS, Release 0.0.1

pause - object of class Pause which contains pause.Flag boolean variable. It is used to transfer pressing
pause button on player’s dashboard event to player’s high level logic.

6.5 SAMPLE_TEAM.main_pb

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. The module is designed for creating players’ dashboard and alternating between team game with Game Con-
troller or individual play without Game Controller.

6.5.1 Module Contents

Classes

Log

Falling

Pause

RedirectText

Main_Panel

Functions

main_procedure()

main()

Attributes

LOGGING_LEVEL

SIMULATION

current_work_directory

game_data

team_1_data

team_2_data

continues on next page

52 Chapter 6. API

ELSIROS, Release 0.0.1

Table 16 – continued from previous page
pause

SAMPLE_TEAM.main_pb.LOGGING_LEVEL

SAMPLE_TEAM.main_pb.SIMULATION = 4

SAMPLE_TEAM.main_pb.current_work_directory

SAMPLE_TEAM.main_pb.game_data

SAMPLE_TEAM.main_pb.team_1_data

SAMPLE_TEAM.main_pb.team_2_data

class SAMPLE_TEAM.main_pb.Log(filename)

get_file_handler(self)

get_stream_handler(self)

get_logger(self, name)

class SAMPLE_TEAM.main_pb.Falling

class SAMPLE_TEAM.main_pb.Pause

SAMPLE_TEAM.main_pb.pause

SAMPLE_TEAM.main_pb.main_procedure()

class SAMPLE_TEAM.main_pb.RedirectText(aWxTextCtrl)
Bases: object

write(self, string)

class SAMPLE_TEAM.main_pb.Main_Panel(*args, **kwargs)
Bases: wx.Frame

main_procedure(self)

InitUI(self)

ShowMessage1(self, event)

ShowMessage2(self, event)

SAMPLE_TEAM.main_pb.main()

6.6 communication_manager_robokit

Class that provides communication with simulator Webots.

6.6. communication_manager_robokit 53

ELSIROS, Release 0.0.1

6.6.1 Module Contents

Classes

CommunicationManager

class communication_manager_robokit.CommunicationManager(maxsize=1, host='127.0.0.1', port=10001,
logger=logging, team_color='RED',
player_number=1, time_step=15)

enable_sensors(self, sensors)→ None

__get_sensor(self, name)→ dict

__send_message(self)

__update_history(self, message)

__procces_object(self, name)

time_sleep(self, t)→ None
Emulate sleep according to simulation time.

Parameters t (float) – time

get_imu_body(self)→ dict
Provide last measurement from imu located in body. Can be empty if ‘imu body’ sensor is not enabled or
webots does not sent us any measurement. Also contains simulation time of measurement.

Returns {“position”: [roll, pitch, yaw]}

Return type dict

get_imu_head(self)→ dict
Provide last measurement from imu located in head. Can be empty if ‘imu_head’ sensor is not enabled or
webots does not send us any measurement. Also contains simulation time of measurement.

Returns {“position”: [roll, pitch, yaw], “time”: time}

Return type dict

get_localization(self)→ dict
Provide blurred position of the robot on the field and confidence in this position (‘consistency’ - where 1
fully confident and 0 - have no confidence). Can be empty if ‘gps_body’ sensor is not enabled or webots
does not send us any measurement. Also contains simulation time of measurement.

Returns {“position”: [x, y, consistency], “time”: time}

Return type dict

get_ball(self)→ dict
Provide blurred position of the ball relative to the robot. Can be empty if: 1. ‘recognition’, ‘gps_body’ or
‘imu_body’ sensors are not enabled 2. webots did not send us any measurement. 3. robot does not stand
upright position 4. ball is not in the camera field of view (fov)

Also contains simulation time of measurement.

Returns {“position”: [x, y], “time”: time}

Return type dict

54 Chapter 6. API

ELSIROS, Release 0.0.1

get_opponents(self)→ list
Provide blurred positions of the opponents relative to the robot. Can be empty if:

1. ‘recognition’, ‘gps_body’ or ‘imu_body’ sensors are not enabled

2. webots did not send us any measurement.

3. robot does not stand upright position

4. opponent is not in the camera field of view (fov)

Also contains simulation time of measurement.

Returns [{“position”: [x1, y1], “time”: time}, {“position”: [x2, y2], “time”: time}]

Return type list

get_mates(self)→ dict
Provide blurred position of the mate relative to the robot. Can be empty if:

1. ‘recognition’, ‘gps_body’ or ‘imu_body’ sensors are not enabled

2. webots did not send us any measurement.

3. robot does not stand upright position

4. mate is not in the camera field of view (fov)

Also contains simulation time of measurement.

Returns {“position”: [x, y], “time”: time}

Return type list

get_time(self)→ float
Provide latest observed simulation time.

Returns simulation time

Return type float

send_servos(self, data)→ None
Add to message queue dict with listed servo names and angles in radians. List of
posible servos: [“right_ankle_roll”, “right_ankle_pitch”, “right_knee”, “right_hip_pitch”,
“right_hip_roll”, “right_hip_yaw”, “right_elbow_pitch”, “right_shoulder_twirl”, “right_shoulder_roll”,
“right_shoulder_pitch”, “pelvis_yaw”, “left_ankle_roll”, “left_ankle_pitch”, “left_knee”, “left_hip_pitch”,
“left_hip_roll”, “left_hip_yaw”, “left_elbow_pitch”, “left_shoulder_twirl”, “left_shoulder_roll”,
“left_shoulder_pitch”, “head_yaw”, “head_pitch”]

Parameters data (dict) – {servo_name: servo_angle, . . . }

run(self)
Infinity cycle of sending and receiving messages. Should be launched in sepparet thread. Communication
manager launch this func itself in constructor

6.6. communication_manager_robokit 55

ELSIROS, Release 0.0.1

6.7 blurrer

6.7.1 Module Contents

Classes

Blurrer Simulate localization and vision noize.

class blurrer.Blurrer(object_angle_noize=0.0, object_distance_noize=0.0, observation_bonus=0.0,
step_cost=0.0, constant_loc_noize=0.0, loc_noize_meters=0.0)

Simulate localization and vision noize. Params is placed in the blurrer.json file. :param object_angle_noize:
Noize for angle in radians.

Blurrer will uniformly random value from -object_angle_noize to object_angle_noize and add it to
the ground truth course. Defaults to 0.

Parameters

• object_distance_noize (float, optional) – Noize for distance in percents di-
vided by 100. Blurrer will uniformly random value from -object_distance_noize to ob-
ject_distance_noize and multiply difference of 1 and this value with ground truth distance.
Defaults to 0..

• observation_bonus (float, optional) – Blurrer will increase the consistency for every
good observation (successfuly processed image). Defaults to 0..

• step_cost (float, optional) – Blurrer will decrease the consistency for every simula-
tion step. Defaults to 0..

• constant_loc_noize (float, optional) – Constant localization noize. Defaults to 0..

• loc_noize_meters (float, optional) – Multiplier for consistency, in meters. Defaults
to 0. Defaults to 0..

load_json(self, filename)

course(self, angle)

distance(self, distance)

objects(self, course=course, distance=distance)

loc(self, x, y)

coord(self, p)

step(self)

observation(self)

update_consistency(self, value)

56 Chapter 6. API

ELSIROS, Release 0.0.1

6.8 message_manager

lass operates with protobuff messages. used to create and parse messages.

6.8.1 Module Contents

Classes

MessageManager

class message_manager.MessageManager(logger=logging, head_buffer_size=4)

get_size(self)

Returns Value of heder byte buffer.

Return type int

static create_requests_message()
Create Empty protobuf class instance for request message.

Returns Empty protobuf class instance.

Return type messages_pb2

static create_answer_message()
Create Empty protobuf class instance for answer message.

Returns Empty protobuf class instance.

Return type messages_pb2

static build_request_from_file(path)
Parsing data from message file to protobuf message instance.

Parameters path (string) – path to filename.txt with message.

Returns protobuf class instance of filled message from file.

Return type messages_pb2

build_request_positions(self, positions)
reating an instance of the protobuff class and fills it with the values of the actuators

Parameters positions (dict) – key - servo name and values - position.

Returns protobuf class instance of filled message with servos.

Return type messages_pb2

static generate_message(message)
Generate bytes string for sending message.

Parameters

• message (messages_pb2) – protobuf class instance of filled

• message. –

6.8. message_manager 57

ELSIROS, Release 0.0.1

Returns bytes string of message.

Return type bytes

message_from_file(self, path)
Function process the protobuff message. Measurement values of sensors, messages from player.exe and
webots. Received messages are placed in the dictionary :param path: path to filename.txt with default
message. :type path: [string]

Returns protobuf class instance, with values from file.

Return type messages_pb2

get_answer_size(self, content_size)
alculating message size from header bytes

Parameters content_size (bytes) – Byte size of answer message.

Returns Size of answer message.

Return type int

add_initial_request(self, sensor_name, sensor_time)
Generate bytes string for sending message.

Parameters

• sensor_name (string) – protobuf class instance of filled

• message. –

Returns bytes string of message.

Return type bytes

build_initial_request(self)
Generate bytes string for initialization message.

Returns bytes string of message.

Return type bytes

parse_answer_message(self, data)
Parsing answer message from byte array to dict with measurements

Parameters data ([type]) – [description]

Returns [description]

Return type [type]

static parse_message(message)→ dict
Function process the protobuff message. Measurement values of sensors, messages from player.exe and
webots. Received messages are placed in the dictionary :param message: protobuf class instance :type
message: messages_pb2 :param of new message with filled or unfilled.:

Returns dict with keys of names sensors

Return type dict

58 Chapter 6. API

PYTHON MODULE INDEX

b
blurrer, 56

c
communication_manager_robokit, 53

m
message_manager, 57

s
SAMPLE_TEAM.launcher_pb, 51
SAMPLE_TEAM.main_pb, 52
SAMPLE_TEAM.Soccer.Localisation, 46
SAMPLE_TEAM.Soccer.Localisation.class_Glob,

46
SAMPLE_TEAM.Soccer.Localisation.class_Local,

46
SAMPLE_TEAM.Soccer.Motion, 39
SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc,

40
SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq,

39
SAMPLE_TEAM.Soccer.Motion.class_Motion, 40
SAMPLE_TEAM.Soccer.Motion.class_Motion_real,

42
SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB,

41
SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3,

42
SAMPLE_TEAM.Soccer.Motion.motion_slots, 39
SAMPLE_TEAM.Soccer.Motion.path_planning, 43
SAMPLE_TEAM.Soccer.strategy, 47

59

ELSIROS, Release 0.0.1

60 Python Module Index

INDEX

Symbols
__get_sensor() (communica-

tion_manager_robokit.CommunicationManager
method), 54

__procces_object() (communica-
tion_manager_robokit.CommunicationManager
method), 54

__send_message() (communica-
tion_manager_robokit.CommunicationManager
method), 54

__update_history() (communica-
tion_manager_robokit.CommunicationManager
method), 54

A
a5 (in module SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3),

43
activation() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motion1

method), 40
add_initial_request() (mes-

sage_manager.MessageManager method),
58

Alpha (class in SAM-
PLE_TEAM.Soccer.Motion.compute_Alpha_v3),
43

arc_path_external() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

arc_path_internal() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

B
ball_Approach() (in module SAM-

PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq),
39

ball_Approach_Calc() (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_calc),
40

ballRadius (in module SAM-
PLE_TEAM.Soccer.Motion.path_planning),
44

blurrer
module, 56

Blurrer (class in blurrer), 56
build_initial_request() (mes-

sage_manager.MessageManager method),
58

build_request_from_file() (mes-
sage_manager.MessageManager static
method), 57

build_request_positions() (mes-
sage_manager.MessageManager method),
57

C
check_Limits() (SAM-

PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

check_Obstacle() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

check_Price() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

communication_manager_robokit
module, 53

CommunicationManager (class in communica-
tion_manager_robokit), 54

compute_Alpha_v3() (SAM-
PLE_TEAM.Soccer.Motion.compute_Alpha_v3.Alpha
method), 43

computeAlphaForWalk() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

coord() (blurrer.Blurrer method), 56
coord2yaw() (SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan

method), 44
coordinate_fall_reset() (SAM-

PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

coordinate_record() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

61

ELSIROS, Release 0.0.1

coordinate_trust_estimation() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

correct_yaw_in_pf() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

course() (blurrer.Blurrer method), 56
create_answer_message() (mes-

sage_manager.MessageManager static
method), 57

create_requests_message() (mes-
sage_manager.MessageManager static
method), 57

current_work_directory (in module SAM-
PLE_TEAM.main_pb), 53

D
dance_main_cycle() (SAM-

PLE_TEAM.Soccer.strategy.Player method),
50

delta_yaw() (SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

detect_Ball_Speed() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

dir_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.Forward method),
49

dir_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.Forward_Vector_Matrix
method), 49

distance() (blurrer.Blurrer method), 56

E
enable_sensors() (communica-

tion_manager_robokit.CommunicationManager
method), 54

external_tangent_line() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

F
Falling (class in SAMPLE_TEAM.main_pb), 53
falling_Test() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

far_distance_ball_approach() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

far_distance_plan_approach() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

find_Ball() (SAMPLE_TEAM.Soccer.strategy.GoalKeeper
method), 47

Forward (class in SAMPLE_TEAM.Soccer.strategy), 49
forward_main_cycle() (SAM-

PLE_TEAM.Soccer.strategy.Player method),
50

forward_old_style_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

Forward_Vector_Matrix (class in SAM-
PLE_TEAM.Soccer.strategy), 49

G
game_data (in module SAMPLE_TEAM.main_pb), 53
game_time() (SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim

method), 41
game_time_ms() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

generate_message() (mes-
sage_manager.MessageManager static
method), 57

get_answer_size() (mes-
sage_manager.MessageManager method),
58

get_ball() (communica-
tion_manager_robokit.CommunicationManager
method), 54

get_file_handler() (SAMPLE_TEAM.main_pb.Log
method), 53

get_imu_body() (communica-
tion_manager_robokit.CommunicationManager
method), 54

get_imu_head() (communica-
tion_manager_robokit.CommunicationManager
method), 54

get_localization() (communica-
tion_manager_robokit.CommunicationManager
method), 54

get_logger() (SAMPLE_TEAM.main_pb.Log method),
53

get_mates() (communica-
tion_manager_robokit.CommunicationManager
method), 55

get_opponents() (communica-
tion_manager_robokit.CommunicationManager
method), 54

get_size() (message_manager.MessageManager
method), 57

get_stream_handler() (SAM-
PLE_TEAM.main_pb.Log method), 53

get_time() (communica-
tion_manager_robokit.CommunicationManager
method), 55

Glob (class in SAMPLE_TEAM.Soccer.Localisation.class_Glob),
46

62 Index

ELSIROS, Release 0.0.1

Glob (class in SAMPLE_TEAM.Soccer.Motion.path_planning),
45

GoalKeeper (class in SAMPLE_TEAM.Soccer.strategy),
47

goalkeeper_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

goalkeeper_old_style_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

goalPostRadius (in module SAM-
PLE_TEAM.Soccer.Motion.path_planning),
44

goto_Center() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 47

group_obstacles() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

H
head_Return() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

head_Up() (SAMPLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

I
import_strategy_data() (SAM-

PLE_TEAM.Soccer.Localisation.class_Glob.Glob
method), 46

import_strategy_data() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.Glob
method), 45

imu_activation() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

imu_body_yaw() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

init_gcreceiver() (in module SAM-
PLE_TEAM.launcher_pb), 51

InitUI() (SAMPLE_TEAM.main_pb.Main_Panel
method), 53

internal_tangent_line() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

intersection_circle_segment_and_circle()
(SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

intersection_line_segment_and_circle() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 44

intersection_line_segment_and_line_segment()
(SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 44

K
kick() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motion1

method), 40

L
load_json() (blurrer.Blurrer method), 56
loc() (blurrer.Blurrer method), 56
Local (class in SAM-

PLE_TEAM.Soccer.Localisation.class_Local),
46

localisation_Complete() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

localisation_Motion() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

Log (class in SAMPLE_TEAM.main_pb), 53
LOGGING_LEVEL (in module SAMPLE_TEAM.main_pb),

53

M
main() (in module SAMPLE_TEAM.main_pb), 53
Main_Panel (class in SAMPLE_TEAM.main_pb), 53
main_procedure() (in module SAM-

PLE_TEAM.main_pb), 53
main_procedure() (SAM-

PLE_TEAM.main_pb.Main_Panel method),
53

message_from_file() (mes-
sage_manager.MessageManager method),
58

message_manager
module, 57

MessageManager (class in message_manager), 57
module

blurrer, 56
communication_manager_robokit, 53
message_manager, 57
SAMPLE_TEAM.launcher_pb, 51
SAMPLE_TEAM.main_pb, 52
SAMPLE_TEAM.Soccer.Localisation, 46
SAMPLE_TEAM.Soccer.Localisation.class_Glob,

46
SAMPLE_TEAM.Soccer.Localisation.class_Local,

46
SAMPLE_TEAM.Soccer.Motion, 39
SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc,

40
SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq,

39

Index 63

ELSIROS, Release 0.0.1

SAMPLE_TEAM.Soccer.Motion.class_Motion,
40

SAMPLE_TEAM.Soccer.Motion.class_Motion_real,
42

SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB,
41

SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3,
42

SAMPLE_TEAM.Soccer.Motion.motion_slots,
39

SAMPLE_TEAM.Soccer.Motion.path_planning,
43

SAMPLE_TEAM.Soccer.strategy, 47
Motion1 (class in SAM-

PLE_TEAM.Soccer.Motion.class_Motion),
40

Motion_real (class in SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real),
42

Motion_sim (class in SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB),
41

move_head() (SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

N
near_distance_ball_approach_and_kick() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

near_distance_omni_motion() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

norm_yaw() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

norm_yaw() (SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

norm_yaw() (SAMPLE_TEAM.Soccer.strategy.Player
method), 50

normalize_rotation() (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq),
39

normalize_rotation() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

normalize_yaw() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

number_Of_Cycles_count() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

O
objects() (blurrer.Blurrer method), 56
observation() (blurrer.Blurrer method), 56

P
parse_answer_message() (mes-

sage_manager.MessageManager method),
58

parse_message() (message_manager.MessageManager
static method), 58

path_calc() (SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

path_calc_optimum() (SAM-
PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

PathPlan (class in SAM-
PLE_TEAM.Soccer.Motion.path_planning),
44

Pause (class in SAMPLE_TEAM.main_pb), 53
pause (in module SAMPLE_TEAM.main_pb), 53
pause_in_ms() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

penalty_Goalkeeper_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

penalty_Shooter_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

play_game() (SAMPLE_TEAM.Soccer.strategy.Player
method), 50

play_Soft_Motion_Slot() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

Player (class in SAMPLE_TEAM.Soccer.strategy), 49
player_super_cycle() (in module SAM-

PLE_TEAM.launcher_pb), 51

Q
quaternion_to_euler_angle() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

R
read_head_imu_euler_angle() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

read_imu_body_yaw() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

read_Localization_marks() (SAM-
PLE_TEAM.Soccer.Localisation.class_Local.Local
method), 46

RedirectText (class in SAMPLE_TEAM.main_pb), 53
refresh_Orientation() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

64 Index

ELSIROS, Release 0.0.1

rotation_test_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

roundAboutRadiusIncrement (in module SAM-
PLE_TEAM.Soccer.Motion.path_planning),
44

run() (communication_manager_robokit.CommunicationManager
method), 55

run_test_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

S
SAMPLE_TEAM.launcher_pb

module, 51
SAMPLE_TEAM.main_pb
module, 52

SAMPLE_TEAM.Soccer.Localisation
module, 46

SAMPLE_TEAM.Soccer.Localisation.class_Glob
module, 46

SAMPLE_TEAM.Soccer.Localisation.class_Local
module, 46

SAMPLE_TEAM.Soccer.Motion
module, 39

SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc
module, 40

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq
module, 39

SAMPLE_TEAM.Soccer.Motion.class_Motion
module, 40

SAMPLE_TEAM.Soccer.Motion.class_Motion_real
module, 42

SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB
module, 41

SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3
module, 42

SAMPLE_TEAM.Soccer.Motion.motion_slots
module, 39

SAMPLE_TEAM.Soccer.Motion.path_planning
module, 43

SAMPLE_TEAM.Soccer.strategy
module, 47

scenario_A1() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_A2() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_A3() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_A4() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper

method), 48
scenario_B1() (SAM-

PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_B2() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_B3() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 49

scenario_B4() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 49

see_ball_confirmation() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

seek_Ball_In_Frame() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

seek_Ball_In_Pose() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

send_angles_to_servos() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

send_servos() (communica-
tion_manager_robokit.CommunicationManager
method), 55

ShowMessage1() (SAM-
PLE_TEAM.main_pb.Main_Panel method),
53

ShowMessage2() (SAM-
PLE_TEAM.main_pb.Main_Panel method),
53

sidestep_test_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player method),
50

sim_Get_Ball_Position() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

sim_Get_Obstacles() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

sim_Get_Robot_Position() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

sim_Progress() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

sim_Start() (SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

sim_Trigger() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

Index 65

ELSIROS, Release 0.0.1

simulateMotion() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

SIMULATION (in module SAMPLE_TEAM.main_pb), 53
square_equation() (SAM-

PLE_TEAM.Soccer.Motion.path_planning.PathPlan
method), 45

step() (blurrer.Blurrer method), 56
steps() (in module SAM-

PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq),
39

T
team_1_data (in module SAMPLE_TEAM.main_pb), 53
team_2_data (in module SAMPLE_TEAM.main_pb), 53
time_sleep() (communica-

tion_manager_robokit.CommunicationManager
method), 54

turn_Face_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.Forward method),
49

turn_Face_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.Forward_Vector_Matrix
method), 49

turn_Face_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 47

turn_To_Course() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

U
update_consistency() (blurrer.Blurrer method), 56
uprightRobotRadius (in module SAM-

PLE_TEAM.Soccer.Motion.path_planning),
44

uprint() (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_calc),
40

uprint() (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq),
39

W
wait_for_step() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

walk_Cycle() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

walk_Final_Pose() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion.Motion1
method), 40

walk_Initial_Pose() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion.Motion1

method), 40
watch_Ball_In_Pose() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

write() (SAMPLE_TEAM.main_pb.RedirectText
method), 53

66 Index

	ELSIROS Intro
	History of Junior Humanoid Soccer games
	The field
	The ball
	The Robots
	Bioloid type with added camera head and computer
	Robokit - a robot designed in MIPT with using Kondo servomotors from Japan

	Robot programming hints
	Rules
	Robot Design
	API
	SAMPLE_TEAM.Soccer.Motion
	Subpackages
	SAMPLE_TEAM.Soccer.Motion.motion_slots

	Submodules
	SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq
	Module Contents
	Functions

	SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc
	Module Contents
	Functions

	SAMPLE_TEAM.Soccer.Motion.class_Motion
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Motion.class_Motion_real
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3
	Module Contents
	Classes
	Attributes

	SAMPLE_TEAM.Soccer.Motion.path_planning
	Module Contents
	Classes
	Attributes

	SAMPLE_TEAM.Soccer.Localisation
	Submodules
	SAMPLE_TEAM.Soccer.Localisation.class_Glob
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Localisation.class_Local
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.strategy
	Module Contents
	Classes

	SAMPLE_TEAM.launcher_pb
	Module Contents
	Functions

	SAMPLE_TEAM.main_pb
	Module Contents
	Classes
	Functions
	Attributes

	communication_manager_robokit
	Module Contents
	Classes

	blurrer
	Module Contents
	Classes

	message_manager
	Module Contents
	Classes

	Python Module Index
	Index

