ELSIROS

Release 0.0.1

Azer Babaev, Egor Davydenko, llya Ryakin, Vladimir Litvinenko, A

Sep 21, 2021

6

ELSIROS Intro

History of Junior Humanoid Soccer games
Robot programming hints

Rules

Robot Design

API

Python Module Index

Index

CONTENTS:

15
17
33
39
59

61

CHAPTER
ONE

ELSIROS INTRO

Soccer game of Humanoid robots is becoming popular between teams in education and academic society. This type of
competitions generates many scientific research points. For students in high schools, colleges or universities in general
there are 3 obstacles preventing them to set up and maintain a humanoid robot soccer team:

1.
2.
3.

extremely high price of humanoid robots,
too complex algorithmic problems to be solved at initial steps of setting robot into game,

small number of teams in one geographical location — means every game is possible only together with travelling
to far distance with relatively high travel charges.

All 3 obstacles can be eliminated if teams start their Humanoid Soccer experience from ELSIROS. Following advan-
tages are obtained with using ELSIROS:

1.
2.

6.

ELSIROS is free of charge and open source.

Most difficult parts of humanoid robot development which are beyond of school or college program like Inverse
Kinematics, walking engine, path planning, detecting of ball and obstacles and localization are provided ready-
made in source codes. Example of playing strategy which proved to be a leading strategy at games of real robots
is provided for study and improvement.

In order to participate in competitions or challenges it is not necessary to travel. Participating teams can compile
their source code into executable binary code which is safe against source code leaking and upload to referees
server.

Teams don’t suffer from backlashes, mis-tunings, mis-calibrations because models are tuned, calibrated and free
of backlashes.

. Strategy modules developed by teams will be ready to be used on real robots which teams may decide to build

or to buy from market in future.

It is not necessarily powerful servers for running training games, simulation can run even at laptop.

ELSIROS is created by Humanoid Robot Soccer team “Starkit” from MIPT (Moscow) after winning Robocup World
Championship 2021. ELSIROS is free of charge and open-source platform pretending from one side to help new
research groups to enter into Humanoid Soccer Competitions world, from other side to host virtual games. ELSIROS
comprises of following components:

1.
2.

Webots simulator (to be downloaded from vendors’ site);

Primary robot model, which is a virtual model of existing physical robot — a winner of international humanoid
soccer challenges in 2019, 2020 and 2021 used by team “Robokit”;

Soccer simulation environment for simulator;
Autonomous/Human referee program and game controller;

Robot controller software pack capable to play games;

ELSIROS, Release 0.0.1

Teams can participate in competitions with Robokit robot and use it for study of basics of programming of strategy of
soccer game for humanoid robots. This is convenient instrument for study of Artificial Intelligence in schools, colleges
and universities. Programming of robots is supported with Python 3 language. But in case of necessity also C, C++,
Java or MATLAB languages can be used for your convenience

Structure of robot controlling software is built for 4 level of robot developers: Beginner, Medium, Advanced and Expert
level. Beginner level developers can access to programming of strategy.py file with purpose to change current robot
behavior in game play. Initially supplied source code represents strategy of game used by leading Russian team at
National championship 2021. Video of this game can be found under link below:

https://youtu.be/AmfKpkL2MUc

Medium level developers can try to improve launcher.py module. This module stands for detecting game state, player
state and team state, managing players role and their starting positions. Advanced developers can try to modify other
modules of source code which are responsible for inverse kinematics, motion, localization, robots’ path planning.

Expert level developers are allowed to compose their own model of robot and use their own controller software with
or without using source code included into ELSIROS open-source package. In order to be admitted to competition
program team providing virtual model of their own robot design have to be qualified. Main requirement to robot model
is that virtual model and real robot must have the same technical performance in all details. Special requirements to
robots’ PROTO which appear from simulation environment can be sent after special request.

If you are a mentor of potential Humanoid Robot Soccer team you can easily start-up with your team. It is necessary
simply download and install ELSIROS in your computer. There is executable version for Windows 10 or source code
for Linux. Please follow instructions and sample code will play soccer just after installation. Please use your favorite
Python 3 IDE for improving players’ source code and you are ready to Virtual Humanoid Robot Soccer challenges in
simulation. You can train your games at your laptop computer.

2 Chapter 1. ELSIROS Intro

CHAPTER
TWO

HISTORY OF JUNIOR HUMANOID SOCCER GAMES

Known early examples of humanoid robot soccer built and programmed by junior students for Robocup refers to year
2016.

Some attepmts to play soccer by humanoid robot built by team from Israel were made at 2016 - 2018

Teams from Israel and Italy have played first International match as demo game at Robocup-2018 in Montreal

ELSIROS, Release 0.0.1

In parallel 2 teams from Tomsk and from Moscow have played first game at Robofinist tournament in St.Petersburg at
2018

- BE ILBE

™

Same 2 teams have repeated demo game in Moscow at 2019

4 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

First full function tournament was held in Tomsk-2019 with 3 teams participating in Russian Nathinonal Robocup

ELSIROS, Release 0.0.1

WV Poccvii‘x'l 41 3Tar YeMMUOHATE

gVASsia Oge (ﬂ
"ﬁ . @ A\E,d

6 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

Since 2019 the game was included into program of Robocup Asia - Pacific.
o T AF 1Y

0 & .
<0 W

‘{3

2.1 The field

The field is made from 3mm carpet with total size of 3 x 4 m,

2.1. The field 7

ELSIROS, Release 0.0.1

with goals made from plumbing tubes, colored to yellow ant blue color.

8 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

2.1. The field 9

ELSIROS, Release 0.0.1

2.2 The ball

The ball is orange color sponge ball with 80mm diameter.

2.3 The Robots

Currently 2 types of robots mostly used by teams:

10 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

2.3. The Robots 11

ELSIROS, Release 0.0.1

2.3.1 Bioloid type with added camera head and computer

leke e .
rebocu

12 Chapter 2. History of Junior Humanoid Soccer games

ELSIROS, Release 0.0.1

2.3.2 Robokit - a robot designed in MIPT with using Kondo servomotors from Japan

Last robot which performed best results in soccer game being champion of Asia-Pacific games of 2019 and 2020 is
used as prototype for virtual model of standart robot in ELSIROS platform.

2.3. The Robots 13

ELSIROS, Release 0.0.1

14 Chapter 2. History of Junior Humanoid Soccer games

CHAPTER
THREE

ROBOT PROGRAMMING HINTS

. It is not advised to play games between completely equal teams. In most cases you can observe non-interesting
game development with rare goals and useless struggling. Therefore, we include 2 styles of playing algorithms:
normal and old style which was practiced in year 2020.

. Real Robots use OpenMV H7 smart camera as vision sensor and onboard computing module. This is single
core controller with Micropython bare metal programming. This means that controller is not capable to pro-
vide walking engine and camera vision simultaneously. In order to update information about ball position and
self-localization robot has to stop into stabile stand-up position and move head to various positions to observe
surroundings. During head moving ball position can be red in case if ball is in visible sector of camera. Camera
have 46 degrees of aperture.

. During observation of surroundings at stand-up position of robot camera catches additional information about
robots’ localization from objects like goal posts, field marking and green field border. The more pictures are
taken the better accuracy of localization.

. Robot can detect obstacles from vision sensor. Obstacle avoidance algorithm is included into path planning, but
it is not perfect in all aspects. There is not implementation of kicking ball strategy with accounting possible
obstacles at ball path. Detected and updated data about obstacles are stored in list self.glob.obstacles

. Communication between team members is legal by rules through UDP messages. Communication is not imple-
mented in current game strategy, but it is allowed to be developed by teams. Communication inside team can
help to organize team play. ELSIROS API provides functionality for messaging between team members.

. Coordinate system of field for purposes of strategy is different from absolute coordinate system of field. For
purpose of strategy own goals are located at part of field with negative X coordinate, opponents’ goals are located
at positive X coordinate. Positive Y coordinate is at left flank of attack, negative Y coordinate is at right flank
of attack. Yaw heading is zero if it is directed from center of own goals to center of opponents’ goals. Yaw
is changed from O to math.pi with turning to left from zero direction. Yaw is changed from O to -math.pi with
turning from zero direction to right. Z coordinate is directed to up with zero on floor.

. Normal ‘forward’ player uses predefined strategy formulated by vector matrix. Matrix is coded in file strat-
egy_data.json This file is readable and editable as well as normal text file. There is a dictionary with one key
‘strategy_data’. Value of key ‘strategy_data’ is a list with default number of elements 234. Each element of list
represents rectangular sector of soccer field with size 20cmX20cm. For each sector there assigned a vector rep-
resenting yaw direction of shooting when ball is positioned in this sector. Power of shot is coded by attenuation
value: 1 — standard power, 2 — power reduced 2 times, 3- power reduced 3 times. Each element of list is coded
as follows: [column, row, power, yaw]. Soccer field is split to sectors in 13 rows and 18 columns. Column 0 is
near own goals, column 17 is near opposed goals. Row O is in positive Y coordinate, row 12 is in negative Y
coordinate.

15

ELSIROS, Release 0.0.1

1. During game player can take 4 roles: ‘forward’, ‘goalkeeper’, ‘penalty_Shooter’, ‘penlaty_Goalkeeper’.
For each role strategy code is different. Launcher module chooses role of player to launch depending on
number of player and secondary game state. In case if number of player is 1 then appointed role will
be ‘goalkeeper’ or ‘penalty_Goalkeeper’. In case if number of player is other than 1 then appointed role
will be ‘forward’ or ‘penalty_Shooter’. In case if secondary game state is ‘STATE_PENALTYSHOOT’
then player with number 1 will be appointed as ‘penlaty_Goalkeeper’ and player with other number
will be appointed to role ‘penalty_Shooter’. Default public player controller strategy appoints player
role ‘goalkeeper’ to player with number 1 and ‘forward’ to player with number other than 1 in all
other secondary game states. Teams can modify strategy and use various roles depending on secondary
game state. According to current game controller there could be following secondary game states:
STATE_NORMAL=0, STATE_PENALTYSHOOT=1, STATE_OVERTIME=2, STATE TIMEOUT=3,
STATE_DIRECT_FREEKICK=4, STATE_INDIRECT_FREEKICK=S5, STATE_PENALTYKICK=6,
STATE_CORNERKICK=7, STATE_GOALKICK=8, STATE THROWIN=9, DROPBALL=128, UN-
KNOWN=255

16 Chapter 3. Robot programming hints

17

ELSIROS, Release 0.0.1

CHAPTER
FOUR

RoboCup Junior

Humanoid Soccer Rules
and Setup

for the 2021 virtual competitions in simulation

August 29th, 2021

Compiled by Azer Babaev
(based on the 2007 version of the rules Humanoid Soccer)

RULES

18

Moscow

Chapter 4. Rules

ELSIROS, Release 0.0.1

1 The Field of Play

The competitions take place on a rectangular field, which contains two goals, field lines, six
restart markers, as shown in Fig. 1.

Figure 1: Soccer field.

Table 1: Soccer field sizes, in cm.

A | Field length 360
B | Field width 260
C | Goal length 15
D | Goal width 100
E | Goal area length 20
F | Goal area width 140
G | Penalty kick distance 90
H | Restart marker width 65
I | Center circle diameter 60
J | Border strip width (min.) 20
-3-

19

ELSIROS, Release 0.0.1

1.1 Playing Surface

The field is covered with green carpet. The white lines are Scm wide. Line segments of 10cm
length are used to mark penalty positions, restart positions, and the kick-off position. The longer
outer field lines are called touch lines, whereas the shorter outer field lines are called RoboCup
Junior Humanoid Soccer Rules and Setup

goal lines. The six restart positions are located half-way between the axis connecting the two
goals and the touch lines, three on each side: in the middle and between the penalty positions
and the touch lines. The field is surrounded by a border strip, which is also covered with green
carpet. The world outside the border strip is undefined.

1.2 Goals

A goal is placed in the middle of each goal line. One of the goals is colored yellow at the three
inner walls. The other goal is colored blue. The goals have a horizontal goal bar at a height of
60cm. The outer goal walls, as well as the goal posts and the goal bar are colored white.

1.3 Corner Poles
Not applicable for simulation

1.4 Lighting

The field is illuminated homogenously by artificial white light sources placed at a height greater
than 2.5m above the field. The brightness of the lighting is between 600lux and 1200lux. The
brightness within the field does not vary more than 300lux.

1.5 People area
Not applicable for simulation

2 The Ball

1. Orange plastic sponge ball (8 cm diameter, 26g),

3 The Number of Players

A match is played by two teams, each consisting of not more than two players, one of whom
may be designated as goalkeeper. A match may not start if either team consists of less than one
player.

3.1 Incapable players

Players not capable of play (e.g. players not walking on two legs, players not able to stand)
are not permitted to participate in the game. They must be removed from the field. It is up to
the referee to judge whether a player is incapable of play. A field player that is not able to get
back into a standing or walking posture from a fall within 20 seconds receives a 30 seconds
removal penalty. If the ball is within a radius of 0.3 m around the goal keeper inside

the goal area, the goal keeper has to show active attempts to move the ball out of this radius
by walking towards the ball or moving the ball. If no attempt is shown for 20 seconds, the
goal keeper is considered to be an inactive player and receives a 30 seconds removal penalty.
A player that stays outside of the field for 20 seconds is considered as an incapable player and
receives a 30 seconds removal penalty.

Removal Penalty.

20 Chapter 4. Rules

ELSIROS, Release 0.0.1

Time penalties of 30 seconds for players are called by the referee. A field player or goal
keeper suffering a time penalty will be automatically removed from the field and is only
allowed to re-enter the field from the team's own half of the field close to the penalty mark as
indicated by the referee. The referee chooses the touch line further away from the ball if there
is still an empty spot available. The first spot for a penalized robot on the touch line is on the
same height of the penalty mark. A valid position must be at least 30 cm away from the goal
line and center line. The referee always positions the robot on the penalty spot closest to the
penalty mark. If two positions are available that are equally close, the referee chooses the
position that is further away from the ball. When placed, the robot joints are reset to their
initial position and their velocities is set to 0.

After the robot has been placed at the position indicated by the referee and with both feet
entirely outside the field of play the 30 seconds penalty start counting.
The Game Controller will:
- Penalize the robot as soon as the referee calls the penalty.
- Marks the penalty time counting down as soon as the robot is placed on the penalty
position outside the field

The penalty is automatically removed after 30 seconds of penalty have

expired.

21

ELSIROS, Release 0.0.1

3.2 Substitutions
Not applicable for simulation

3.3 Temporal Absence
Not applicable for simulation

4 The Design of the Robots

Robots participating in the Humanoid League competitions must have a human-like body plan,
as shown in Fig. 2. They must consist of two legs, two arms, and one head, which are attached
to a trunk. The robots must be able to stand upright on their feet and to walk on their legs. The
only allowed modes of locomotion are bipedal walking and running. -

Figure 2: Humanoid robot body plan.

4.1 Robot Height
4.1.1: The height H of a robot is determined as follows:

H = min(Htop, 2.2 - Heom), Where Hiop denotes the height of the robot when standing
upright and Heom denotes the height of the robot's center of mass, measured in upright

posture. 4.1.2: Based on H, the following size restrictions apply:

*30cm <H <50cm, o

4.2 Size Restrictions
All robots participating in the Humanoid League must comply with the following restrictions:

1. Each foot must fit into a rectangle of area H%/24.

2. Considering the rectangle enclosing the convex hull of the foot, the ratio between the
longest side of the rectangle and the shortest one, shall not exceed 2.5

3. The robot must fit into a cylinder of diameter 0.55%H.

4. If the arms are maximally stretched in horizontal direction, their extension must be less than
1.2 - H.

5. The robot does not possess a configuration where it is extended longer than 1.5 - H.

-6-

22

Chapter 4.

Rules

ELSIROS, Release 0.0.1

6. The length of the legs Hieg, including the feet, satisfies 0.35-H < Hieg < 0.7-H.
7. The height of the head Hhead, including the neck, satisfies 0.05-H < Hpead < 0.25-H.

4.3 Sensors

Teams participating in the Humanoid League competitions are encouraged to equip their robots

with sensors that have an equivalent in humans. These sensors should be placed at a position

roughly equivalent to the human senses. In particular,

1. Any active sensor (emitting light, sound, or electromagnetic waves into the environment in
order to measure reflections) is not allowed.

2. External sensors, such as cameras and microphones, may not be placed in the legs or arms
of the robots. They should be placed in the robot's head.

3. Touch sensors, force sensors, and temperature sensors may be placed at any position on the
robot.

4. Sensors inside the robot may measure all quantities of interest, including (but not limited
to) voltages, currents, forces, movements, accelerations, and rotational speeds. They can be
at any position inside the robot.

4.4 Communication and Control
4.4.1: Robots participating in the competitions must act autonomously while a competition is
running.

4.4.2: Robots may communicate only via the network channel provided by the organizers. The
total bandwidth of the robots belonging to one team may not exceed 1MBaud.

4.4.3: Robots of a team may communicate with each other at any time during a game.

4.5 Colors and Markers

4.5.1: Robots must be mostly black. Less than 10% of the total body surface may have a higher
reflectance, e.g. gray or white. Less than 1% of the total body surface may be colored. Any
color used for the field (green, yellow, blue) or the ball (orange) should be avoided.

4.5.2: The robots must be marked with team markers, attached to the trunk. These markers are
colored magenta for one team and cyan for the other team. At least 6cmx6cm
of the team markers should be visible from any side.

4.5.3: The robots of a team must be uniquely identifiable. They should be marked with numbers
or names. Each player must have number on its breast and on its back. Player number 1 must
be a goalkeeper at beginning of game.

4.6 Safety
4.6.1: Not applicable for simulation

4.6.2: Not applicable for simulation

4.7 Robustness

Robots participating in the Humanoid League competitions must be constructed in a robust
way. They must maintain structural integrity during contact with the field, the ball, or other

_7-

23

ELSIROS, Release 0.0.1

players. Their sensing systems must be able to tolerate significant levels of noise and
disturbance caused by other players, the referees, robot handlers, and the audience.

4.8 Conformity of robot model

Model of robot used for simulation must be in conformity with technical performances of real
robots owned by team. In case if team doesn’t own any real robot, team can use any robot model
which were provided for public usage by community of participating teams which was
approved for usage. Any new robot model must be approved for usage by Technical Committee.

5 The Referee

The authority of the referee
Each match is controlled by an autonomous referee who has full authority to enforce the Laws
of the Game in connection with the match to which they have been appointed. Decisions will
be made to the best of the referee’s ability according to the Laws of the Game and the spirit of
the game and will be based on the programming of the referee who has the discretion to take
appropriate action within the framework of the Laws of the Game.
The games are overseen by the Technical Committee of the league, who ensures that the
players and simulated environment is according to the laws of the game, and who may
sanction unsupportive behavior by teams.
Powers and duties
The autonomous Referee:
- enforces the Laws of the Game;
- controls the match;
- acts as timekeeper and keeps a record of the match;
- stops, suspends or abandons the match, at their discretion, for any infringements of the
Laws;
- punishes the more serious offence when a player commits more than one offence at the
same time;
- takes disciplinary action against players guilty of cautionable and sending-off
offences. They are not obliged to take this action immediately but must do so when the ball
next goes out of play;
- indicates the restart of the match after it has been stopped;
- provides the appropriate authorities with a match report, which includes information
on any disciplinary action taken against players and/or team officials and any other incidents
that occurred before, during or after the match;
- indicates when the whole of the ball leaves the field of play;
- indicates whether, at penalty kicks, the goalkeeper moves off the goal line before the
ball is kicked and if the ball crosses the line;
- communicates its decisions directly to the GameController.

The Technical Committee:

- ensures that any ball used meets the requirements of Law;

- ensures that the players' equipment meets the requirements of Law;

- stops, suspends or abandons the match because of outside interference of any kind;
- takes action against team officials who fail to conduct themselves in a responsible
manner and may, at their discretion, expel them from the field of play and its immediate
surrounds.

24 Chapter 4. Rules

ELSIROS, Release 0.0.1

Decisions of the referee

The decisions of the referee regarding facts connected with play, including whether or not a
goal is scored and the result of the match, are final.

6 The Assistant Referees

Not applicable for simulation

7 The Duration of the Match

7.1 Periods
7.1.1: The match lasts two equal periods of 5 minutes.

7.1.2: Allowance is made in either period for all time lost through, e.g. substitution(s), timeouts,
and wasting time. The allowance for time lost is at the discretion of the Human referee.

7.1.3: In the knock-out games of a tournament two further equal periods of 3 minutes each are
played if the game is not decided after the regular playing time. If during regular playing time
none of the two teams in a knock-out match was able to kick the ball to reach their respective
opponent's goal the extra time is skipped and the game immediately continues by the five
alternating penalty kick trials (cf. Section 14).

7.2 Timeouts
suspended

8 The Start and Restart of Play

8.1 Preliminaries

8.1.1: Teams have to upload their robots’ proto file at least 1 week before game, controller
software and their “team.json” file at least 20 minutes prior to the scheduled kick-off time. In
case if team is going to use standard robots’ proto file “Robokit1.proto” then robots’ proto will
be used from referees’ computer. A decision about which team which goal will attack in the
first half of the match, which team takes the kick-off to start the match will be taken by referee
computer through random algorithm. In the second half of the match the teams change ends
and attack the opposite goals. Kick-off of ball in second half of match is passed to team other
than kick-off team of first half. Human handler of referees’ computer downloads teams’
controller software to “controller” directory, copy “team.json” file into “referee” directory.
Human handler edit “game.json’ file in order to input data about teams file, teams color, teams
starting side and initial kick-off team. All other files in referee’s computer must be same as in
Elsiros distribution package in order to provide same game environment as in teams’ home
computers.

8.1.2: Color of team markers for each match in tournament have to be selected by random
algorithm at beginning of tournament.

8.1.3: A match must start at the scheduled time. In exceptional situations only, the human
referee may re-adjust the time for starting the game in accordance with both team leaders. All
robots of a team are started (and stopped) by receiving a signal from Game Controller.

25

ELSIROS, Release 0.0.1

8.2 Kick-off

8.2.1: A kick-off is a way of starting or restarting play at the start of the match, after a goal has
been scored, at the start of the second half of the match, at the start of each period of extra time,
where applicable. After a team scores a goal, the kick-off is taken by the other team.

8.2.2: A goal may not be scored directly from the kick-off. Either the ball must move 20cm
from the kick-off point or must be touched by another player before being kicked towards the
goal.

If the ball is kicked directly towards the goal the kick-off is awarded to the opposing team.

8.2.3: The procedure for kick-off is as follows:

* All players are in their own half of the field.

* The opponents of the team taking the kick-off are outside the center circle until the ball is
in play.

» The ball is stationary on the center mark.

* The referee gives a signal.

* The ball is in play when it is touched or 10 seconds elapsed after the signal.

8.2.4: Robots being able to autonomously reposition themselves can take any position on the
field that is consistent with above requirements. Robots not able to autonomously reposition
themselves will be positioned to ready starting position by autonomous referee.

8.2.5: The game state can turn to following states:
STATE_INITIAL: Auto referee places players to border starting positions.

STATE_READY: will be eliminated if no one team shows capability to reposition themselves.
In case if one team is capable to reposition to ready starting position then this sate lasts 45
seconds allowing to team to take position.

STATE_SET : Auto referee places players to ready starting position or penalize players which
have taken illegal starting position. Legal starting position is located in any point at own half
of field of team outside of central circle and outside of goal area.

STATE_PLAYING : state when players allowed to play game.
STATE_FINISHED: state when all players are switched off, goals are not scored
8.3 Dropped Ball

8.3.1: A dropped ball is a way of restarting the match after a temporary stoppage which becomes
necessary, while the ball is in play, for any reason not mentioned elsewhere in the rules. In
particular, the referee may call a game-stuck situation if there is no progress of the game for
60s.

8.3.2: The game is continued at the center mark. A goal can be scored directly from a dropped
ball. The procedure for dropped ball is the same as for kick-off, except that the robots of both
teams must be outside the center circle (or at or behind restart positions if positioned manually).
The ball is in play immediately after the referee gives the signal.

8.3.3: If a player moves too close to the ball before the referee gives the signal, a kick-off is
awarded to the opponent team.

-10 -

26

Chapter 4. Rules

ELSIROS, Release 0.0.1

9 The Ball In and Out of Play

9.1: The ball is out of play when it has wholly crossed the goal line or touch line whether on
the ground or in the air or when play has been stopped by the referee.

9.2: The ball is in play at all other times, including when it rebounds from a goalpost, crossbar,
corner pole and remains in the field of play.

10 The Method of Scoring

10.1: A goal is scored when the whole projection of the ball on floor passes over the goal line,
between the goalposts and under the crossbar, provided that no infringement of the rules has
been committed previously by the team scoring the goal.

10.2: The team scoring the greater number of goals during a match is the winner. If both teams
score an equal number of goals, or if no goals are scored, the match is drawn.

10.3: For knock-out matches ending in a draw after regular time, extra time, penalty kicks, and
scoring times will be used to determine the winner of a match.

10.4: An abandoned match is replayed unless the league organization committee decides
otherwise. If a team chooses to forfeit a match, the result will be 10:0 against the team that
forfeited. Teams may choose to forfeit games at any stage prior to the end of the game.

11 Offside
The offside rule is not applied.

12 Fouls and Misconduct

12.1 Ball Manipulation
Not applied

12.2 Physical Contact

Contact between robot players is guided by the following principles:

1. Physical contact between players of different teams should be minimized.

2. If physical contact is unavoidable, the faster moving robot should make efforts to minimize
the impact. The goal keeper enjoys special protection inside its goal area. The attacking
player always has to avoid contact with the goalie.

3. Extended physical contact should be avoided. Both robots should make efforts to terminate
contact, if the contact time exceeds Is.

4. If entangled robots fail to untangle themselves, the referee might decide to penalize one of
robots or both robots together. In this case robot approaching from far distance must be
considered as “guilty”, and robot located nearer to ball must be considered as “innocent”.

-11 -

27

ELSIROS, Release 0.0.1

12.3 Attack and Defense

12.3.1: Not more than one robot of each team should be inside the goal or the goal area at any
time. If more than one robot of the defending team is inside its goal or goal area for more than
10s, this will be considered illegal defense. If more than one robot of the attacking team is inside
the opponent's goal or goal area for more than 10s, this will be considered illegal attack.

12.3.2: The referee may delay the call of illegal defense or illegal attack if the robots make
serious attempts to leave the goal area or if they are hindered from leaving the goal area by
robots of the opponent team.

12.4 Indirect Free Kick
Not applied

12.5 Yellow and Red Cards

12.5.1: A player is cautioned and shown the yellow card if he commits any of the following
offenses:

1. is guilty of unsporting behavior,

2. persistently infringes the rules,

3. delays the restart of play,

4. fails to respect the required distance when play is restarted with a free kick.

12.5.2: A player is sent off the field and shown the red card if he commits any of the following
offenses:

1. is guilty of serious foul play,

2. is guilty of violent conduct,

3. receives a second caution in the same match.

13 The Free Kicks
Not applied

14 The Penalty Kick
14.1: A goal may be scored directly from a penalty kick.

14.2: The player taking the penalty kick is placed at a distance of at least 1.5 - H from the
penalty mark.

14.3: The defending goalkeeper is placed in upright position on the middle of his goal line,
facing the kicker. It must remain upright between the goalposts until the ball has been touched
by the kicker.

14.4: No other players are allowed on the field.

14.5: When both players are ready, the ball is placed randomly within 20cm of the penalty
mark.

14.6: After the referee gives the start signal, the striker has 60s to kick the ball once or multiple
times. After this time, the trial ends if the movement of the ball obviously does not result in a
goal. Otherwise, the trial is extended until the ball stops.

-12 -

28

Chapter 4. Rules

ELSIROS, Release 0.0.1

14.7: The striker is not allowed to touch the ball during this extension. The striker is also not
allowed to touch the ball after the ball has been touched by the goalie.

14.8: The goalie is not allowed to move forward or to fall until the ball is touched by the striking
robot.

14.9: Both robots are not allowed to touch or cross the line around the goal area.

14.10: If the goalie robot violates the rules in any way, the referee will let the trial continue. If
the striker robot scores a goal, then the goal counts. If the striker does not score a goal, the trial
is retaken. If the goalie violates the rules after causing two restarts, a technical goal is awarded
to the striker.

14.11: If the striker violates the rules in any way, the referee will let the trial continue. If the
striker robot is unable to score a goal, the trial ends. If the striker scored, the trial is retaken
without counting the goal. If the striker violates the rules after causing two restarts, the trial will
end with 'no goal'.

14.12: Both teams conduct five alternating trials.

» If after the first five trials none of the teams was able to kick the ball to the goal line then
the winner is determined by flipping a coin.

» If there is still a draw in knock-out games, the alternating trials continue up to five more
times, until one teams leads after an equal number of trials.

» If there is still a draw in knock-out games, the alternating trials continue up to five more
times without goalies, until either one striker is able to score and the other striker fails to
score or both strikers score. In the latter case, the goal is awarded to the striker that needed
the shortest time for scoring.

» If there is still a draw in knock-out games, the winner is determined by flipping a coin.

15 The Throw-In

A throw-in is necessary if the ball leaves the field of play, by fully crossing a touch line or a
goal line (outside the goal posts or above the cross bar) either on the ground or in the air.
Without stopping play, one of the assistant referees places the ball at one of the three restart
points that are on the same side, where the ball left the field.

» The ball is placed at the restart point closest to a goal, if a player of the team defending this
goal was touched last by the ball before it went out on the same half of the field.

» The ball is placed at the restart point on the middle line in all other cases.
If a robot obstructs the restart point, the ball is placed at the next empty spot found by moving
from the restart position towards the closer touch line.

16 The Goal Kick

The goal kick is performed without stopping play according to the throw-in procedure.

17 The Corner Kick

The corner kick is performed without stopping play according to the throw-in procedure.

18 deleted

-13 -

29

ELSIROS, Release 0.0.1

19 The Technical Challenge

suspended

20 The Competitions and Trophies

20.1 Setup and Inspections

The competitions in the Humanoid League are preceded by a setup and inspection period of at
least 1 week. During this time, every robot’s proto presented by teams will be inspected by the
league organizing committee for compliance with the design rules detailed in Section 4. All
robot protos must be designed in strict technical conformity to real robots owned by teams. If
team decided to use standard robot’s proto then inspection is not needed.

20.2 Referee Duty

Each team must name at least one person who is familiar with the rules and who might be
assigned for referee duties by the league organizing committee.

20.3 Competitions

20.3.1: The competitions consist of Soccer Games

20.3.2: Soccer Games are organized in one or more round robins and playoffs. For the first
round robin, the teams are assigned to groups at random. All teams of a group play once against
each other. The round robin games may end in a draw. In this case, both teams receive one
point. Otherwise, the winning team receives three points and the not winning team receives
zero points.

20.3.3: After games of a round robin have been played, the teams of a group are ranked based
on (in decreasing priority):

the number of earned points,

the goal-difference,

the absolute number of goals,

the result of a direct match,

the time needed to score a penalty kick into an empty goal (up to five alternating attempts
to score, until at least one team scored),

6. the drawing of a lot.

Sl L o

20.3.4: At least two teams of every group will enter the next round robin or the playoffs.

20.3.5: The game plan needs to be announced prior to the random assignment of teams to
groups.

- 14 -

30 Chapter 4. Rules

ELSIROS, Release 0.0.1

Appendix A

The trend in rule evolution for the next years

In this section to make explicit the trends to be followed in the rules in the next year in order to
improve the scientific level of the robots developed by the RoboCup teams.

In case if virtual simulation games attracts many participants then they can be developed to
bigger size of field and bigger number of players in order to implement team play strategies.

Acknowledgements

These rules evolved from version of the RoboCup Humanoid League rules designed for 2007
competition by Emanuele Menegatti. The 2006 version of the rules was edited by Sven Behnke,
who did a terrific job improving this rule document. The 2005 version was edited by Norbert
Michael Mayer. Other input came from the FIFA laws of the game and the rules of the RoboCup
MiddleSize and Four-legged leagues.

The rules were discussed within the technical and organizing committees of the league and
also on the Humanoid list. Among others, Minoru Asada, Jacky Baltes, Hans-Dieter Burkhard,
Davide Faconti, Rodrigo Guerra, Bernhard Hengst, Hiroshi Ishiguro, Damien Kee, Yue Pik
Kong, Pasan Kulvanit, Norbert Michael Mayer, Emanuele Menegatti, Chew Chee Meng,
Masaki Ogino, Maziar Palhang, Thomas Réfer, Philippe Schober, Naoki Shibatani, Oskar von
Stryk, Ashfaque Ur-Rahman, Gerald Weratschnig, Shuzo Yumoto, and Changjiu Zhou
contributed to the discussion.

The rules were updated for virtual games in simulation with borrowing some parts from
Virtual RoboCup Soccer Humanoid League Laws of the Game 2020/2021. The following
members of the technical committee for 2021 were responsible for creating the first version of
the rules for the virtual Humanoid RoboCup league: Jacky Baltes, Reinaldo Bianchi, Reinhard
Gerndt, Wang Hao, Ludovic Hofer, Maike Paetzel and Soroush Sadeghnejad.

-15-

31

ELSIROS, Release 0.0.1

32

Chapter 4. Rules

CHAPTER
FIVE

ROBOT DESIGN

Standard robot proto used for simulation is Robokitl.proto. It is designed as virtual copy of real robot. In order to
represent real robot all technical features of virtual model were copied from technical description of real robot including
servo torque, servo speed, servo mass, location of camera, camera resolution, aperture of camera lens, number and
location of accelerometers, weight distribution throughout of body.

33

ELSIROS, Release 0.0.1

Virtual model has 2 IMUs named “imu_head” and “imu_body”. Real robot is capable to recognize coordinate of itself
at soccer field with accuracy +15cm, it is capable to recognize obstacles and ball. Recognition of distance and course
to ball and obstacles is made through machine vision algorithms. Robot detectds distance and course to object with
accuracy mainly dependent on camera accuracy. Good calibrated robot detects course to object with accuracy =+ 0.01
Radian. Accuracy of distance recognition non-linearly depends on distance to object, with best accuracy at minimum
distances which is £ Smm. Distance measurement accuracy at distance 1m is & 25mm, at distance 2m is £ 100mm
High accuracy of distance and course measurement are provided due to equipment and smart algotihms used for direct
measurements. Localization on soccer field is provided by measurements of cource and distence to goal posts, field
marking, green field border, odometry, measurement of IMU. All localization data is accumulated with historical data
and processed by patricle filter algorithm in order to achieve better accuracy than measurement of individual object.
Simulation procedure in Webots is orgaised in way when simulation of physics and motion is provided together with
camera image scanning. Procedure of image scanning and transfer to outside from Webots greatly reduces simulation
speed. In order to keep simulation speed at acceptable rate it was decided to skip procedure of scanning images by
camera in simulation and replace it with direct request- report procedure. Following data are reported to Robokit1 robot
from simulation by request: distance and course from robot to ball, distance and course from robot to other players, self

34 Chapter 5. Robot Design

ELSIROS, Release 0.0.1

coordinate and orientation on field. Requested data before reporting to robot are mixed with random values in order
to provide same accuracy which usually real robot detects from camera image. Above procedure is called “blurrer”.
Above procedure provide increasing is simulation speed up to 10 times. This know-how of ELSIROS provides games
to be played at laptop computer with nearly realtime speed.

Below is technical description of real Robokit robot.

35

ELSIROS, Release 0.0.1

/ Head with “brain”

«— .
Aluminum levers

Reset button + 3 programmable
buttons on head

“Get Ready” button and “Relax”
button on backpack

13 servomotors KRS-2552 ICS +

10 servomotors KRS-2672 ICS

Camera

Servo controller,

gyro,
accelerometer

Battery

“Soccer” design of steps

Robokit Robot

36

Chapter 5. Robot Design

ELSIROS, Release 0.0.1

ROBOKIT Robot Specification:

- Height45cm

- Weight 1.9 kg

- Battery voltage 12 V

- 23 DOF: 13 servomotors KRS-2552 ICS +10 servomotors KRS-2672 ICS

- Main controller: OpenMV H7 with 32-Bit Arm Cortex-M7 operating at 400MHz with 1Mb
SRAM

- Motion controller: Kondo RCB-4HV

- Programming language: Micropython.

- Sensors: OV7725 640x480 camera, 6D digital IMU BNOOS5, 2D analogue Gyro, 3D analogue
Accelerometer

37

ELSIROS, Release 0.0.1

38

Chapter 5. Robot Design

CHAPTER
SIX

6.1 SAMPLE_TEAM.Soccer.Motion

6.1.1 Subpackages

SAMPLE_TEAM. Soccer.Motion.motion_slots

6.1.2 Submodules

SAMPLE_TEAM. Soccer.Motion.ball_Approach_Steps_Seq

Module Contents

Functions

API

uprint(*text)

normalize_rotation(yaw)

steps(motion, x1, y1, ul, x2, y2, u2)

ball_Approach(motion, local, glob, ball_coord)

SAMPLE_TEAM. Soccer.Motion.ball_Approach_Steps_Seq.uprint (*rext)
SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq.normalize_rotation(yaw)

SAMPLE_TEAM. Soccer.Motion.ball_Approach_Steps_Seq.steps(motion, xI, yl, ul, x2, y2, u2)

SAMPLE_TEAM. Soccer.Motion.ball_Approach_Steps_Seq.ball_Approach(motion, local, glob, ball_coord)

39

ELSIROS, Release 0.0.1

SAMPLE_TEAM. Soccer.Motion.ball_Approach_calc

Module Contents

Functions

uprint(*text)

ball_Approach_Calc(glob, ball_coord)

SAMPLE_TEAM. Soccer.Motion.ball_Approach_calc.uprint (*text)

SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc.ball_Approach_Calc(glob, ball_coord)

SAMPLE_TEAM. Soccer.Motion.class_Motion

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

This module contains walking engine

Module Contents

Classes

Motionl

class SAMPLE_TEAM.Soccer.Motion.class_Motion.Motionl (glob)

imu_body_yaw(self)

norm_yaw (self, yaw)

quaternion_to_euler_angle (self, quaternion)

play_Soft_Motion_Slot (self, name="")

computeAlphaForWalk (self, sizes, limAlpha, hands_on=True)
activation(self)

walk_TInitial_Pose(self)

walk_Cycle(self, stepLength, sideLength, rotation, cycle, number_Of_Cycles)
walk_Final_Pose(self)

kick(self, first_Leg_Is_Right Leg, small=False)

refresh_Orientation(self)

40

Chapter 6. API

ELSIROS, Release 0.0.1

SAMPLE_TEAM. Soccer.Motion.class_Motion_Webots_PB

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.
The module is designed to provide communication from motion controller to simulation

Module Contents

Classes

Motion_sim

class SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim(glob, robot, gcreceiver, pause,

logger)
Bases: SAMPLE_TEAM. Soccer.Motion.class_Motion_real.Motion_real

game_time (self)

game_time_ms (self)

pause_in_ms (self, time_in_ms)
sim_Trigger (self, time)
wait_for_step(self, step)
imu_activation(self)
read_head_imu_euler_angle(self)
read_imu_body_yaw(self)

falling_Test (self)
send_angles_to_servos (self, angles, use_step_correction=False)
move_head (self, pan, tilt)
simulateMotion(self, number=0, name="")
sim_Get_Ball_Position(self)
sim_Get_Obstacles(self)
sim_Get_Robot_Position(self)
sim_Start (self)

sim_Progress (self, simTime)

6.1. SAMPLE_TEAM.Soccer.Motion 41

ELSIROS, Release 0.0.1

SAMPLE_TEAM. Soccer.Motion.class_Motion_real

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

The module is a part of motion generating functions

Module Contents

Classes

Motion_real

class SAMPLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real (glob)
Bases: SAMPLE_TEAM. Soccer.Motion.class_Motion.Motionl

seek_Ball_In_Pose(self, fast_Reaction_On, penalty_Goalkeeper=False, with_Localization=True)
watch_Ball_In_Pose(self, penalty_Goalkeeper=False)

seek_Ball_In_Frame (self, with_Localization=True)

detect_Ball_Speed(self, with_Localization=False)

see_ball_confirmation(self)

turn_To_Course(self, course, accurate=False)

head_Up (self)

head_Return(self, old_neck_pan, old_neck_tilt)

localisation_Motion(self)

normalize_rotation(self, yaw)

near_distance_omni_motion(self, dist_mm, napravl)
near_distance_ball_approach_and_kick(self, kick_direction, strong_kick=False, small_kick=False)
far_distance_ball_approach(self, ball_coord)

far_distance_plan_approach (self, ball_coord, target_yaw, stop_Over=False)

SAMPLE_TEAM. Soccer.Motion.compute_Alpha_v3

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. Module can be used for Inverted Kinematics for legs of Robokit-1 robot. Advantage of module against other
IK implementations is fast and repeatable calculation benchmark. Result is achieved due to mixed analytic/numerical
calculation method. Module is designed for 6 DOF robot leg. From 6 angles one angle is calculated using numerical
iterations, other 5 angles are obtained through polynom roots formula calculation. This way prowides fast benchmark
and repeatability. Algorithm being implemented in C language with integration into firnware of OpenMYV is capable to
calculated angles for robot legs within time less than 1ms. Multiple IK solutions are filtered through applying of angle
limits within calculation. This yields less time for calculation. usage: create class Alpha instance and call method
compute_Alpha_v3 with arguments. Returns list of 0, 1 or 2 lists of servo angles. List of 0 elements means that IK
was not solved. List of 1 list means 1 possible solition is detected. List of 2 lists means that plurality of solutions was
not filtered by provided arguments.

42 Chapter 6. API

ELSIROS, Release 0.0.1

Module Contents

Classes

Alpha

Attributes

as

class SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3.Alpha

compute_Alpha_v3(self, xt, yt, zt, x, y, z, w, sizes, limAlpha)

usage: list: angles = self.compute_Alpha_v3(float: xt, float: yt, float: zt, float: x, float: y, float: z,
float: w, list: sizes, list: limAlpha)

angles: list of floats angles in radians of servos which provide target positioning and orientation of
robots’ foot

xt: target x coordinate of foots’ center point yt: target y coordinate of foots’ center point zt: target z co-
ordinate of foots’ center point x: x coordinate of vector of orientation of foot y: y coordinate of vector
of orientation of foot z: z coordinate of vector of orientation of foot w: rotation in radians of foot around
vector of orientation sizes: list of sizes defining distances between servo axles in biped implementation
limAlpha: list of limits [minimum, maximum] of servomotors measured in number of encoder ticks

of Kondo series 2500 servomotors.

Target coordinates are measured in local robot coordinate system XYZ with ENU orientation. [0,0,0] point
of coordinate system is linked to pelvis of robot. Foot orientation vector has length 1. Base of vector is at
bottom of foot and tip of vector is directed down when foot is on floor.

SAMPLE_TEAM. Soccer.Motion.compute_Alpha_v3.a5 = 21.5

SAMPLE_TEAM. Soccer.Motion.path_planning

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A.
Babaev. module can be used for optimized path planing of Robokit-1 robot. usage: create class PathPlan type object
instance and call method path_calc_optimum. Optionally module can be launched stand alone for purpose of tuning
and observing result of path planing. Being launched stand alone module draws soccer field with player (white circle),
ball (orange circle), obstacles (black circles). Circles are movable by mouse dragging. After each stop of mouse new
path is drawing.

6.1. SAMPLE_TEAM.Soccer.Motion 43

ELSIROS, Release 0.0.1

Module Contents

Classes

PathPlan Plans optimized path of humanoid robot from start co-
ordinate to target coordinate.

Glob

Attributes

goalPostRadius

ballRadius

uprightRobotRadius

roundAboutRadiusIncrement

SAMPLE_TEAM. Soccer.Motion.path_planning.goalPostRadius = 0.15
SAMPLE_TEAM. Soccer.Motion.path_planning.ballRadius = 0.1
SAMPLE_TEAM.Soccer.Motion.path_planning.uprightRobotRadius = 0.2
SAMPLE_TEAM.Soccer.Motion.path_planning.roundAboutRadiusIncrement = 0.15

class SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan(glob)

Plans optimized path of humanoid robot from start coordinate to target coordinate. Coordinates are taken together
with orientation. Path is composed from initial arc, final arc and connecting line. Connecting line must be
tangent to arcs. In case of obstacles on path line additional arc is added in order to go around obstacle. Only
one obstacle can be avoided reliably. Avoiding of second obstacle is not guaranteed. Therefore there are used
evaluations of prices of variants of path. The Path with cheaper price is returned. Collision with obstacle in far
distance is cheaper than collision with obstacle in near distance. During Path heuristic various radiuses of arcs
are considered. Arc with zero radius means turning without changing coordinate.

coord2yaw (self, x, y)

intersection_line_segment_and_line_segment (self, x1, yl, x2, y2, x3, y3, x4, y4)
Checks if 2 line segments have common point. :returns: True - if there is common point

False - if not.

x = x1 + (x2 - x1) * tl tl - paramentric coordinate y = yl + (y2 - y1) *tl x =x3 + (x4 - x3) * 2 (2 -
paramentric coordinate y = y3 + (y4 - y3) * 2 x1 + (x2-x1) *tl =x3 + (x4 - x3) * 2yl + (y2 - yl) * tl
=y3+(yd-y3)*2tl=x3+x4-x3)*2-x1)/(xX2-x1)tl=(y3+Fy4-y3)*t2-yl)/(y2-yl)yl
+(Y2-yD*F(x3+x4-x3)*2-x1)/(xX2-x1)=y3 + (y4-y3) * 2 (y2-yl) * (x4 - x3)/ (x2 - x1) *t2
-(y4-y3)*2=y3 -yl -(y2-y)*(x3-x1)/ (x2-x1)2=(y3 -yl - (y2-yl) * (x3 -x1)/ (x2 - x1))
/((y2-y1) * (x4 -x3)/ (x2 - x1) - (y4 - y3)) if t1 == 0:

2 = (yl - y3)/ (y4 - y3) 12 = (x1 - x3)/ (x4 - x3)

intersection_line_segment_and_circle(self, xI, yl, x2, y2, xc, yc, R)
Checks if line segment and circle have common points. :returns: True - if there is common point

44 Chapter 6. API

ELSIROS, Release 0.0.1

False - if not.

x =x1 + (x2 - x1) * tt - paramentric coordinate y = y1 + (y2 - y1) ¥ t R¥*¥2 = (x - xc)**2 + (y - yc)**2 (x1
+ (x2-x1) *t-xc)**2 + (yl + (y2 - y1) *t-yc)**2 - R¥*2 = 0 ((x2 - x1) * t)**2 + (xI - xc)**2 + 2 *
x2-x1)* (X1 -xc) *t+ ((y2-yl) *O)**2 + (yl -yc)**2 + 2 * (y2 -y1) * (yl -yc) ¥t -R**2 =0 ((x2 -
X1)¥*F2 4+ (y2 - yD)F*2) ¥ t%%¥2 + (2% (x2-x1) * (X1 -xc) + 2 * (y2 - y1) * (yl - y¢)) * t + (x1 - xc)**2 +
(yl-yo)**2-R¥*2=0a*t**2+b*t+c=0a=(x2-x)**2 + (y2-y)**2b =2 * (x2 - x1) * (x1 - xc)
+2*(y2-yl) *(yl -yc)c=(x1-xc)**2 + (yl - yc)**2 - R¥*2

intersection_circle_segment_and_circle(self, x1, yl, x2, y2, x0, yO, CW, xc, yc, R)
norm_yaw (self, yaw)
delta_yaw(self, start_yaw, dest_yaw, CW)

path_calc_optimum(self, start_coord, target_coord)
Returns optimized humanoid robot path. usage:

list: dest, list: centers, int: number_Of_Cycles = self.path_calc_optimum(list: start_coord, list:
target_coord) dest: list of destination point coordinates. Each coordinate is list or tuple of floats
[x,y].

Each coordinate is starting or end point of path segment. Path comprises of following
segments: circle segment, line segment, n*(circle segment, line segment), circle segment.
Where n - iterable.

centers: list of coordinates of circle centers of circle segments of path. Each coordinate is list or
tuple of floats [x,y]. number_Of_Cycles: integer which represents price of path. In case if value
is >100 then collision with second obstacle on path

is not verified.

start_coord: list or tuple of floats [X, y, yaw] target_coord: list or tuple of floats [X, y, yaw]
path_calc(self, start_coord, target_coord)
arc_path_external (self, xI, yl, yawl, x2, y2, yaw2)
check_Obstacle(self, xpl, ypl, xp2, yp2)
check_Limits(self, x1, yl, x2, y2, xpl, ypl, xp2, yp2, xcl, ycl, CW1, xc2, yc2, CW2, dest)
check_Price(self, x1, y1, x2, y2, xpl, ypl, xp2, yp2, xcl, ycl, CWI, xc2, yc2, CW2, dest, centers)
number_0f_Cycles_count (self, dest, centers, yawl, yaw2)
external_tangent_line(self, start, RI1, R2, x1, yl, xcl, ycl, xc2, yc2, CW)
arc_path_internal (self, xI, yl, yawl, x2, y2, yaw2)
internal_tangent_line(self, start, RI1, R2, x1, yl, xcl, ycl, xc2, yc2, CW)
square_equation(self, a, b, ¢)

class SAMPLE_TEAM.Soccer.Motion.path_planning.Glob

import_strategy_data(self, current_work_directory)

6.1. SAMPLE_TEAM.Soccer.Motion 45

ELSIROS, Release 0.0.1

6.2 SAMPLE_TEAM.Soccer.Localisation

6.2.1 Submodules

SAMPLE_TEAM.Soccer.Localisation.class_Glob

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

This module is used to store variables which are used in many classes

Module Contents

Classes

Glob

class SAMPLE_TEAM.Soccer.Localisation.class_Glob.Glob(simulation, current_work_directory)

import_strategy_data(self, current_work_directory)

SAMPLE_TEAM. Soccer.Localisation.class_Local

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of A. Babaev.

This module is assisting localization

Module Contents

Classes

Local

class SAMPLE_TEAM.Soccer.Localisation.class_Local.Local (logger, motion, glob,
coord_odometry=[0.0, 0.0, 0.0])

coordinate_fall_reset(self)
coordinate_trust_estimation(self)
normalize_yaw(self, yaw)
correct_yaw_in_pf (self)
coordinate_record(self)
localisation_Complete(self)

group_obstacles(self)

46 Chapter 6. API

ELSIROS, Release 0.0.1

read_Localization_marks(self)

6.3 SAMPLE_TEAM.Soccer.strategy

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. The module is designed for strategy of soccer game for forward and goalkeeper.

6.3.1 Module Contents

Classes

GoalKeeper class GoalKeeper is designed to define goalkeeper's play
according to style developed by

Forward The class Forward is designed for definition of strategy
of play for 'forward' role of player

Forward_Vector_Matrix The class Forward_Vector_Matrix is designed for defi-
nition of strategy of play for 'forward' role of player

Player class Player is designed for implementation of main cy-
cle of player.

class SAMPLE_TEAM.Soccer.strategy.GoalKeeper (logger, motion, local, glob)

class GoalKeeper is designed to define goalkeeper’s play according to style developed by Matvei Ivaschenko -
a student of Phystech Lyceum in 2020. Idea of style was in dividing of home half of shoccer field to 8 sectors
according to distance from home goals. When ball is in 4 sectors closest to goals Al, A2, A3, A4 goalkeeper
attacks ball with purpose transfer it to side of opponent. When ball is in 4 sectors B1, B2, B3, B4 which are in
longer distance from goals goalkeeper just slide to better position from current without attempt to attack ball. In
case if ball didn’t go longer than 1m after kick of goalkeeper, he will undertake another attempt up to 10 times in
total. In case if ball goes to distance longer than 1m or ball can’t be seen by goalkeeper then goalkeeper returns
to center of goals.

turn_Face_To_Guest (self)

The method is designed to define kick direction and load it into self.direction_To_Guest direction is mea-
sured in radians of yaw. After definition of kick direction robot turns to this direction. In case if robots’
own coordinate self.glob.pf_coord shows lication on own half of field i.e. self.glob.pf_coord[0] < O then
direction of shooting is O if robots’ x coordinate > 0.8 and abs(y coordinate) > 0.6 then direction of kick
is to center of opponents’ goals. if robots’ x < 1.5 and abs(y) < 0.25 kick direction will be to corner of
opponents’ goals, with left or right corner is defined randomly. in all other positions of robot kick direction
is defined as ditection to target point with coordinates x = 0, y = 2.8

goto_Center(self)
Goalkeeper returns to duty position 0.4m in front of own goals. before returning robot checks trustability
of localization. If localization is poor then robot undertake special motions by head and by turning to
goals with purpose to improve localization. In case if distance to duty position is more than 0.5m then
far_distance_plan_approach will be used, else near_distance_omni_motion will be used. after returning to
duty position robot turns to kick direction, for which yaw=0 in front of own goals.

find_Ball (self)
Before using motion method seek_Ball_In_Pose goalkeeper define usage of method in quick mode or in
accurate mode. In case if localization is trustable quick mode is used means fast_Reaction_On=True.
seek_Ball_In_Pose method moves head of robot to 15 positions covering all visible areas in front and
in sides of robot. this way seeking of ball is not single task. Robot improves localization through ob-

6.3. SAMPLE_TEAM.Soccer.strategy 47

ELSIROS, Release 0.0.1

serving localization markers on obtained pictures. In case if fast_Reaction_On=True then observation of
surroundings will be interrupted as soon as ball appear in visible sector. Speed of ball is also detected.

scenario_Al(self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from 0 to
math.pi/4. Supposed that goalkeeper stands on duty position faced to opponents’ goals before seeking ball.
usage:

None: self.scenario_A1l(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_A2 (self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from
math.pi/4 to math.pi/2. Supposed that goalkeeper stands on duty position faced to opponents’ goals before
seeking ball. usage:

None: self.scenario_Al(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_A3(self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from O
to -math.pi/4. Supposed that goalkeeper stands on duty position faced to opponents’ goals before seeking
ball. usage:

None: self.scenario_Al(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_A4 (self, dist, napravl)
This method is activated if goalkeeper finds ball at distance less than 0.7m and relative direction from -
math.pi/4 to -math.pi/2. Supposed that goalkeeper stands on duty position faced to opponents’ goals before
seeking ball. usage:

None: self.scenario_A1(float:dist, float: napravl) dist - distance to ball from goalkeeper in me-
ters napravl - relative direction to ball from goalkeeper in radians

method undertake 10 attempts to kick off ball to opponents side. In case of successful attempt - ball goes
1m away from goalkeeper - goalkeeper returns to duty position in front of own goals. Otherwise attempts
are continued up to 10 times.

scenario_B1(self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from 0 to math.pi/4. Supposed that goalkeeper stands on duty position faced
to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to O direction

scenario_B2 (self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from O to math.pi/4. Supposed that goalkeeper stands on duty position faced

48 Chapter 6. API

ELSIROS, Release 0.0.1

to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to O direction

scenario_B3(self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from O to math.pi/4. Supposed that goalkeeper stands on duty position faced
to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to 0 direction

scenario_B4 (self)
This method is activated if goalkeeper finds ball at distance more than 0.7m and less than half of length
of field and relative direction from 0 to math.pi/4. Supposed that goalkeeper stands on duty position faced
to opponents’ goals before seeking ball. method undertake to slide robot sideways to same Y coordinate
as balls’ Y coordinate. In case if balls’ Y coordinate abs value is more than 0.4m robots maximum Y
coordinate abs value will be 0.4m After sliding sideways robot undertake turning to 0 direction

class SAMPLE_TEAM.Soccer.strategy.Forward(logger, motion, local, glob)
The class Forward is designed for definition of strategy of play for ‘forward’ role of player in year 2020. usage:

Forward(object: motion, object: lical, object: glob)

dir_To_Guest (self)

The method is designed to define kick direction and load it into self.direction_To_Guest, direction is mea-
sured in radians of yaw. In case if robots’ own coordinate self.glob.pf_coord shows lication on own half of
field i.e. self.glob.pf_coord[0] < O then direction of shooting is 0 if robots’ x coordinate > 0.8 and abs(y
coordinate) > 0.6 then direction of kick is to center of opponents’ goals. if robots’ x < 1.5 and abs(y) <
0.25 kick direction will be to corner of opponents’ goals, with left or right corner is defined randomly. in
all other positions of robot kick direction is defined as ditection to target point with coordinates x = 0, y =
2.8 returns float: self.direction_To_Guest

turn_Face_To_Guest (self)

class SAMPLE_TEAM.Soccer.strategy.Forward_Vector_Matrix(logger, motion, local, glob)

The class Forward_Vector_Matrix is designed for definition of strategy of play for ‘forward’ role of player in
year 2021. Matrix is coded in file strategy_data.json This file is readable and editable as well as normal text file.
There is a dictionary with one key “strategy_data”. Value of key “strategy_data” is a list with default number
of elements 234. Each element of list represents rectangular sector of soccer field with size 20cmX20cm. For
each sector there assigned a vector representing yaw direction of shooting when ball is positioned in this sector.
Power of shot is coded by attenuation value: 1 — standard power, 2 — power reduced 2 times, 3- power reduced
3 times. Each element of list is coded as follows: [column, row, power, yaw]. Soccer field is split to sectors in
13 rows and 18 columns. Column 0 is near own goals, column 17 is near opposed goals. Row 0 is in positive
Y coordinate, row 12 is in negative Y coordinate. Strategy data is imported from strategy_data.json file into
self.glob.strategy_data list. usage:

Forward_Vector_Matrix(object: motion, object: local, object: glob)

dir_To_Guest (self)
The method is designed to define kick direction and load it into self.direction_To_Guest. Direction is
measured in radians of yaw. usage:

int: row, int: col = self.dir_To_Guest() row, col - row and column of matrix attributing rectangular
sector of field where ball coorinate self.glob.ball_coord fits.

turn_Face_To_Guest (self)

class SAMPLE_TEAM.Soccer.strategy.Player (logger, role, second_pressed_button, glob, motion, local)
class Player is designed for implementation of main cycle of player. Real robot have 3 programmable buttons.
Combination of button pressing can transmit to programm pressed button code from 1 to 9. At initial button

6.3. SAMPLE_TEAM.Soccer.strategy 49

ELSIROS, Release 0.0.1

pressing role of player is selected. With second pressed button optional playing mode is selected depending
on role. For ‘forward’ and ‘forward_old_style’ role second_pressed_button can take value 1 or value 4. With
value 1 player starts game as kick-off player, with value 4 player stars as non-kick-off player, which means player
starts moving 10 seconds later. For ‘run_test’ role second_pressed_button can take values from 1 or value 9 with
following optional modes: 1 - 10 cycle steps walk forward 2 - 20 cycle side step walk to right 3 - 20 cycle side
step walk to left 4 - 20 cycle steps walk forward 5 - 20 cycle steps with rotation to right side 6 - 20 cycle steps
with rotation to left side 9 - 20 cycle steps of spot walk All modes of run test are used with purpose to calibrate
walking. After calibration is completed results of calibration must be input to file Sim_params.json. Motion
module is used calibration data for planning motions and odometry correction into localization. usage:

Player(str: role, int: second_pressed_button, object: glob, object: motion, object: local)
play_game (self)
rotation_test_main_cycle(self, pressed_button)

run_test_main_cycle(self, pressed_button)
For ‘run_test’ role second_pressed_button can take values from 1 or value 9 with following optional modes:
1 - 10 cycle steps walk forward 2 - 20 cycle side step walk to right 3 - 20 cycle side step walk to left 4 -
20 cycle steps walk forward 5 - 20 cycle steps with rotation to right side 6 - 20 cycle steps with rotation to
left side 9 - 20 cycle steps of spot walk All modes of run test are used with purpose to calibrate walking.
After calibration is completed results of calibration must be input to file Sim_params.json. Motion module
is used calibration data for planning motions and odometry correction into localization. usage:

self.run_test_main_cycle(int: pressed_button)
sidestep_test_main_cycle(self, pressed_button)

norm_yaw (self, yaw)
This module normalizes yaw according to internal rule: -pi <= yaw <= pi usage:

float: yaw = self.norm_yaw(float: yaw) yaw - orientation on horizontal surface in radians,
zero value orientation is directed along X axis

forward_main_cycle(self, pressed_button)
Main cycle method for ‘forward’ role of player. usage:

self.forward_main_cycle(int: pressed_button)

forward_old_style_main_cycle(self, pressed_button)
Main cycle method for ‘forward_old_style’ role of player. usage:

self.forward_main_cycle(int: pressed_button)

goalkeeper_main_cycle(self)
goalkeeper main cycle method is based on vector matrix strategy. Goalkeeper doesn’t leave goals too far.
Supposed that goalkeeper starts game at point on middle of goal line. After 10 seconds from game start
goalkeeper moves to duty position which depends on detected ball position. In case if ball appears in
dangetous position goalkeeper attcks ball.

goalkeeper_old_style_main_cycle(self)
main cycle for old style goalkeeper strategy

penalty_Shooter_main_cycle(self)
main cycle for penalty striker

penalty_Goalkeeper_main_cycle(self)

dance_main_cycle(self)

50

Chapter 6. API

ELSIROS, Release 0.0.1

6.4 SAMPLE_TEAM.launcher_pb

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. The module is designed for strategy of soccer game by forward and goalkeeper.

6.4.1 Module Contents

Functions
init_gcreceiver(team, player, is_goalkeeper) The function creates and object receiver of Game Con-
troller messages. Game Controller messages are broad-
casted to
player_super_cycle(falling, team_id, The function is called player_super_cycle because dur-

robot_color, player number, SIMULATION, cur- ing game player can change several roles. Each role
rent_work_directory, robot, pause, logger)

SAMPLE_TEAM. launcher_pb.init_gcreceiver (team, player, is_goalkeeper)
The function creates and object receiver of Game Controller messages. Game Controller messages are broad-
casted to teams and to referee. Format of messages can be seen in module gamestate.py. Messages from Game
Controller contains Robot info, Team info and Game state info. usage of function:

object: receiver = init_gcreceiver(int: team, int: player, bool: is_goalkeeper)

team - number of team id. For junior competitions it is recommended to use unique id
for team in range 60 - 127

player - number of player displayed at his trunk is_goalkeeper - True if player is appointed to play
role of goalkeeper

SAMPLE_TEAM. launcher_pb.player_super_cycle(falling, team_id, robot_color, player_number,
SIMULATION, current_work_directory, robot, pause,
logger)

The function is called player_super_cycle because during game player can change several roles. Each role ap-
pointed to player put it into cycle connected to playing it’s role. Cycles of roles are defined in strategy.py mod-
ule. player_super_cycle is cycle of cycles. For example player playing role of ‘forward’ can change role to
‘penalty_shooter’ after main times and extra times of game finished. In some situations you may decide to
switch roles between forward player and goalkeeper. Usage:

player_super_cycle(object: falling, int: team_id, str: robot_color, int: player_number, int: SIMULATION,
Path_object: current_work_directory, object: robot, object: pause)

falling - class object which contains int: falling.Flag which is used to deliver information about falling from
low level logic to high level logic. falling.Flag can take O - nothing happend, 1 -falling on
stomach, -1 - falling face up, 2 - falling to left, -2 - falling to right, 3 - exit from playing fase

team_id - can take value from 60 to 127 robot_color - can be ‘red’ or ‘blue’ player_number - can be
from 1 to 5, with 1 to be assigned to goalkeeper SIMULATION - used for definition of simulation
enviroment. value 4 is used for Webots simulation,

value 2 is used for playing in real robot

current_work_directory - is Path type object robot - object of class which is used for communication
between robot model in simulation and controller

program. In case of external controller program ‘ProtoBuf’ communication manager is used.
‘ProtoBuf” - is protocol developed by Google.

6.4. SAMPLE_TEAM.launcher_pb 51

ELSIROS, Release 0.0.1

pause - object of class Pause which contains pause.Flag boolean variable. It is used to transfer pressing
pause button on player’s dashboard event to player’s high level logic.

6.5 SAMPLE_TEAM.main_pb

The module is designed by team Robokit of Phystech Lyceum and team Starkit of MIPT under mentorship of Azer
Babaev. The module is designed for creating players’ dashboard and alternating between team game with Game Con-
troller or individual play without Game Controller.

6.5.1 Module Contents

Classes

Log

Falling

Pause

RedirectText

Main_Panel

Functions

main_procedure()

main()

Attributes

LOGGING_LEVEL

SIMULATION

current_work_directory

game_data

team_I1_data

team_2_data

continues on next page

52 Chapter 6. API

ELSIROS, Release 0.0.1

Table 16 — continued from previous page

pause

SAMPLE_TEAM.main_pb.LOGGING_LEVEL
SAMPLE_TEAM.main_pb.SIMULATION = 4
SAMPLE_TEAM.main_pb.current_work_directory
SAMPLE_TEAM.main_pb.game_data
SAMPLE_TEAM.main_pb.team_1_data
SAMPLE_TEAM.main_pb.team_2_data

class SAMPLE_TEAM.main_pb.Log(filename)

get_file_handler(self)
get_stream_handler (self)
get_logger (self, name)
class SAMPLE_TEAM.main_pb.Falling
class SAMPLE_TEAM.main_pb.Pause
SAMPLE_TEAM.main_pb.pause
SAMPLE_TEAM.main_pb.main_procedure()

class SAMPLE_TEAM.main_pb.RedirectText (aWxTextCtrl)
Bases: object

write(self, string)

class SAMPLE_TEAM.main_pb.Main_Panel (*args, **kwargs)
Bases: wx.Frame

main_procedure (self)
InitUI(self)
ShowMessagel (self, event)
ShowMessage2 (self, event)

SAMPLE_TEAM.main_pb.main()

6.6 communication_manager_robokit

Class that provides communication with simulator Webots.

6.6. communication_manager_robokit

53

ELSIROS, Release 0.0.1

6.6.1 Module Contents

Classes

CommunicationManager

class communication_manager_robokit.CommunicationManager (maxsize=1, host="'127.0.0.1', port=10001,

logger=logging, team_color="RED’,
player_number=1, time_step=15)

enable_sensors (self, sensors) — None

__get_sensor (self, name) — dict

__send_message (self)

__update_history (self, message)

__brocces_object (self, name)

time_sleep (self, t) — None

Emulate sleep according to simulation time.

Parameters t (float) — time

get_imu_body (self) — dict

Provide last measurement from imu located in body. Can be empty if ‘imu body’ sensor is not enabled or
webots does not sent us any measurement. Also contains simulation time of measurement.

Returns {“position”: [roll, pitch, yaw]}

Return type dict

get_imu_head(self) — dict

Provide last measurement from imu located in head. Can be empty if ‘imu_head’ sensor is not enabled or
webots does not send us any measurement. Also contains simulation time of measurement.

Returns {“position”: [roll, pitch, yaw], “time”: time}

Return type dict

get_localization(self) — dict

Provide blurred position of the robot on the field and confidence in this position (‘consistency’ - where 1
fully confident and O - have no confidence). Can be empty if ‘gps_body’ sensor is not enabled or webots
does not send us any measurement. Also contains simulation time of measurement.

Returns {“position”: [x, y, consistency], “time”: time}

Return type dict

get_ball(self) — dict

Provide blurred position of the ball relative to the robot. Can be empty if: 1. ‘recognition’, ‘gps_body’ or
‘imu_body’ sensors are not enabled 2. webots did not send us any measurement. 3. robot does not stand
upright position 4. ball is not in the camera field of view (fov)

Also contains simulation time of measurement.
Returns {“position”: [X, y], “time”: time}

Return type dict

54

Chapter 6. API

ELSIROS, Release 0.0.1

get_opponents (self) — list
Provide blurred positions of the opponents relative to the robot. Can be empty if:

1. ‘recognition’, ‘gps_body’ or ‘imu_body’ sensors are not enabled
2. webots did not send us any measurement.
3. robot does not stand upright position
4. opponent is not in the camera field of view (fov)
Also contains simulation time of measurement.
Returns [{“position™: [x1, y1], “time”: time}, {“position”: [x2, y2], “time”: time}]
Return type list

get_mates(self) — dict
Provide blurred position of the mate relative to the robot. Can be empty if:

1. ‘recognition’, ‘gps_body’ or ‘imu_body’ sensors are not enabled
2. webots did not send us any measurement.
3. robot does not stand upright position
4. mate is not in the camera field of view (fov)
Also contains simulation time of measurement.
Returns {“position”: [X, y], “time”: time}
Return type list

get_time(self) — float
Provide latest observed simulation time.

Returns simulation time
Return type float

send_servos (self, data) — None
Add to message queue dict with listed servo names and angles in radians. List of
posible servos: [“right_ankle_roll”, “right_ankle_pitch”, “right_knee”, “right_hip_pitch”,
“right_hip_roll”, “right_hip_yaw”, “right_elbow_pitch”, “right_shoulder_twirl”, “right_shoulder_roll”,
“right_shoulder_pitch”, “pelvis_yaw”, “left_ankle_roll”, “left_ankle_pitch”, “left_knee”, “left_hip_pitch”,
“left_hip_roll”, “left_hip_yaw”, “left_elbow_pitch”, “left_shoulder_twirl”, “left_shoulder_roll”,

“left_shoulder_pitch”, “head_yaw”, “head_pitch”]
Parameters data (dict) - {servo_name: servo_angle, ...}

run(self)
Infinity cycle of sending and receiving messages. Should be launched in sepparet thread. Communication
manager launch this func itself in constructor

6.6. communication_manager_robokit 55

ELSIROS, Release 0.0.1

6.7 blurrer

6.7.1 Module Contents

Classes

Blurrer Simulate localization and vision noize.

class blurrer.Blurrer (object_angle_noize=0.0, object_distance_noize=0.0, observation_bonus=0.0,
step_cost=0.0, constant_loc_noize=0.0, loc_noize_meters=0.0)
Simulate localization and vision noize. Params is placed in the blurrer.json file. :param object_angle_noize:
Noize for angle in radians.

Blurrer will uniformly random value from -object_angle_noize to object_angle_noize and add it to
the ground truth course. Defaults to 0.
Parameters

* object_distance_noize (float, optional) — Noize for distance in percents di-
vided by 100. Blurrer will uniformly random value from -object_distance_noize to ob-
ject_distance_noize and multiply difference of 1 and this value with ground truth distance.
Defaults to O..

» observation_bonus (float, optional)-Blurrer will increase the consistency for every
good observation (successfuly processed image). Defaults to O..

* step_cost (float, optional) — Blurrer will decrease the consistency for every simula-
tion step. Defaults to O..

» constant_loc_noize (float, optional) - Constant localization noize. Defaults to 0..
* loc_noize_meters (float, optional)- Multiplier for consistency, in meters. Defaults
to 0. Defaults to O..

load_json(self, filename)

course (self, angle)

distance(self, distance)

objects(self, course=course, distance=distance)

loc(self, x, y)

coord (self, p)

step (self)

observation(self)

update_consistency (self, value)

56 Chapter 6. API

ELSIROS, Release 0.0.1

6.8 message_manager

lass operates with protobuff messages. used to create and parse messages.

6.8.1 Module Contents

Classes

MessageManager

class message_manager.MessageManager (logger=Ilogging, head_buffer_size=4)

get_size(self)

Returns Value of heder byte buffer.
Return type int

static create_requests_message()
Create Empty protobuf class instance for request message.

Returns Empty protobuf class instance.
Return type messages_pb2

static create_answer_message()
Create Empty protobuf class instance for answer message.

Returns Empty protobuf class instance.
Return type messages_pb2

static build_request_from_file(path)
Parsing data from message file to protobuf message instance.

Parameters path (string) — path to filename.txt with message.
Returns protobuf class instance of filled message from file.
Return type messages_pb2

build_request_positions(self, positions)
reating an instance of the protobuff class and fills it with the values of the actuators

Parameters positions (dict) — key - servo name and values - position.
Returns protobuf class instance of filled message with servos.
Return type messages_pb2

static generate_message(message)
Generate bytes string for sending message.

Parameters
* message (messages_pb2) — protobuf class instance of filled

* message. —

6.8. message_manager

57

ELSIROS, Release 0.0.1

Returns bytes string of message.
Return type bytes

message_from_file(self, path)
Function process the protobuff message. Measurement values of sensors, messages from player.exe and
webots. Received messages are placed in the dictionary :param path: path to filename.txt with default

message. :type path: [string]
Returns protobuf class instance, with values from file.
Return type messages_pb2

get_answer_size(self, content_size)
alculating message size from header bytes

Parameters content_size (bytes) — Byte size of answer message.
Returns Size of answer message.
Return type int

add_initial_request (self, sensor_name, sensor_time)
Generate bytes string for sending message.

Parameters
* sensor_name (string) — protobuf class instance of filled
* message. —

Returns bytes string of message.

Return type bytes

build_initial_request(self)
Generate bytes string for initialization message.

Returns bytes string of message.
Return type bytes

parse_answer_message (self, data)
Parsing answer message from byte array to dict with measurements

Parameters data ([type])— [description]
Returns [description]
Return type [type]

static parse_message(message) — dict
Function process the protobuff message. Measurement values of sensors, messages from player.exe and
webots. Received messages are placed in the dictionary :param message: protobuf class instance :type
message: messages_pb2 :param of new message with filled or unfilled.:

Returns dict with keys of names sensors

Return type dict

58 Chapter 6. API

b

blurrer, 56

C

communication_manager_robokit, 53

m

message_manager, 57

S

SAMPLE_TEAM. launcher_pb, 51

SAMPLE_TEAM.main_pb, 52

SAMPLE_TEAM.Soccer.Localisation, 46

SAMPLE_TEAM.Soccer.Localisation.class_Glob,
46

SAMPLE_TEAM.Soccer.Localisation.class_Local,
46

SAMPLE_TEAM. Soccer.Motion, 39

SAMPLE_TEAM. Soccer.Motion.ball_Approach_calc,
40

SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Segq,
39

SAMPLE_TEAM.Soccer.Motion.class_Motion, 40

SAMPLE_TEAM.Soccer.Motion.class_Motion_real,
42

SAMPLE_TEAM. Soccer.Motion.class_Motion_Webots_PB,
41

SAMPLE_TEAM. Soccer.Motion.compute_Alpha_v3,
42

SAMPLE_TEAM. Soccer.Motion.motion_slots, 39

SAMPLE_TEAM.Soccer.Motion.path_planning, 43

SAMPLE_TEAM. Soccer.strategy, 47

PYTHON MODULE INDEX

59

ELSIROS, Release 0.0.1

60

Python Module Index

Symbols

__get_sensor() (communica-
tion_manager_robokit. CommunicationManager
method), 54

__procces_object() (communica-
tion_manager_robokit. CommunicationManager
method), 54

__send_message() (communica-
tion_manager_robokit. CommunicationManager
method), 54

__update_history() (communica-
tion_manager_robokit. CommunicationManager
method), 54

A

a5 (inmodule SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3),

43

activation() (SAMPLE_TEAM.Soccer.Motion.class_Mot?&?ﬁ/}{onoon
method), 40

add_initial_request() (mes-
sage_manager.MessageManager method),
58

Alpha (class in SAM-

PLE_TEAM.Soccer.Motion.compute_Alpha_v3),

43

arc_path_external () (SAM-

PLE_TEAM.Soccer.Motion.path_planning. PathPlan

method), 45

arc_path_internal) (SAM-

PLE_TEAM . Soccer.Motion.path_planning.PathPlan

blurrer
module, 56

Blurrer (class in blurrer), 56

build_initial_request()
sage_manager.MessageManager
58

build_request_from_file()
sage_manager.MessageManager
method), 57

build_request_positions()
sage_manager.MessageManager
57

C

check_Limits()

method), 45
b%tacle O

PLE_TEAM.Soccer.Motion.path_planning. PathPlan

method), 45
check_Price()

PLE_TEAM.Soccer.Motion.path_planning. PathPlan

method), 45
communication_manager_robokit
module, 53
CommunicationManager (class in
tion_manager_robokit), 54
compute_Alpha_v3()

PLE_TEAM.Soccer.Motion.compute_Alpha_v3.Alpha

method), 43
computeAlphaForWalk()

INDEX

(mes-
method),

(mes-
static

(mes-
method),

(SAM-

PLE_TEAM.Soccer.Motion.path_planning. PathPlan

(SAM-

(SAM-

communica-

(SAM-

(SAM-

method), 45 . . .
PLE_TEAM.Soccer.Motion.class_Motion.Motionl
B method), 40
ball h . Jul. SAM. coord() (blurrer.Blurrer method), 56
all_Approach() (in . modute " coord2yaw() (SAMPLE_TEAM.Soccer.Motion.path_planning. PathPlan

PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq), method), 44
39 . coordinate_fall_reset() (SAM-

ball_Approach_Calc() (in module SAM-

PLE_TEAM.Soccer.Localisation.class_Local.Local

PLE_TEAM.Soccer.Motion.ball_Approach_calc), method), 46

ball d'40 . Jul AM coordinate_record() (SAM-
allRa I;LSE TEAM(m M 'mo u; p . SAM- PLE TEAM.Soccer.Localisation.class_Local.Local
" - .Soccer.Motion.path_planning), method), 46

61

ELSIROS, Release 0.0.1

coordinate_trust_estimation() (SAM-

Forward (class in SAMPLE_TEAM.Soccer.strategy), 49

PLE _TEAM.Soccer.Localisation.class_Local. Locdlorward_main_cycle() (SAM-
method), 46 PLE_TEAM.Soccer.strategy.Player — method),
correct_yaw_in_pf() (SAM- 50
PLE _TEAM.Soccer.Localisation.class_Local. Locdlorward_old_style_main_cycle() (SAM-
method), 46 PLE_TEAM.Soccer.strategy.Player — method),
course() (blurrer.Blurrer method), 56 50
create_answer_message() (mes- Forward_Vector_Matrix (class in SAM-
sage_manager.MessageManager static PLE_TEAM.Soccer.strategy), 49
method), 57
create_requests_message() (mes- Gl
sage_manager.MessageManager static game_data (in module SAMPLE_TEAM.main_pb), 53
method), 5’7 game_time () (SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB..
current_work_directory (in module SAM- method), 41
PLE_TEAM.main_pb), 53 game_time_ms() (SAM-
D PLE _TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
method), 41
dance_main_cycle() (SAM- generate_message() (mes-
PLE_TEAM.Soccer.strategy.Player — method), sage_manager.MessageManager static
50 method), 57
delta_yaw() (SAMPLE_TEAM.Soccer.Motion.path_plannigygtPathdiler_size) (mes-
method), 45 sage_manager.MessageManager method),
detect_Ball_Speed() (SAM- 58
PLE_TEAM.Soccer.Motion.class_Motion_real. Magéon _Wedll () (communica-

method), 42

dir_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.Forward method),
49

dir_To_Guest() (SAM- get_
PLE_TEAM.Soccer.strategy.Forward_Vector_Matrix
method), 49

distance() (blurrer.Blurrer method), 56 get_

E

enable_sensors() (communica- get_

tion_manager_robokit. CommunicationManager
method), 54

external_tangent_line() (SAM-
PLE_TEAM.Soccer.Motion.path_planning. PathPlan
method), 45

F?

Falling (class in SAMPLE_TEAM.main_pb), 53

falling Test() (SAM-

get_

get_

get_

get_

tion_manager_robokit. CommunicationManager
method), 54

file_handler() (SAMPLE_TEAM.main_pb.Log
method), 53

imu_body () (communica-
tion_manager_robokit. CommunicationManager
method), 54

imu_head() (communica-
tion_manager_robokit. CommunicationManager
method), 54

localization() (communica-

tion_manager_robokit. CommunicationManager
method), 54

logger) (SAMPLE_TEAM.main_pb.Log method),
53

mates() (communica-
tion_manager_robokit. CommunicationManager
method), 55

opponents() (communica-

tion_manager_robokit. CommunicationManager

PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motiohetingd), 54

method), 41

far_distance_ball_approach() (SAM-

PLE_TEAM.Soccer.Motion.class_Motion_real. M@®w-_gt&Ram_handler O

method), 42

far_distance_plan_approach() (SAM-

get_

get_

size() (message_manager.MessageManager
method), 57

(SAM-
PLE_TEAM.main_pb.Log method), 53

time() (communica-

PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real tion_manager_robokit. CommunicationManager

method), 42

find_Ball () (SAMPLE_TEAM.Soccer.strategy. GoalKeepdplob (class in SAMPLE_TEAM.Soccer.Localisation.class_Glob),

method), 47

method), 55

46

62

Index

ELSIROS, Release 0.0.1

Glob (class in SAMPLE_TEAM.Soccer.Motion.path_planningytersection_line_segment_and_line_segment ()

45 (SAMPLE_TEAM.Soccer.Motion.path_planning. PathPlan
GoalKeeper (class in SAMPLE_TEAM.Soccer.strategy), method), 44
47
goalkeeper_main_cycle() (SAM- K
PLE_TEAM.Soccer.strategy.Player method), kick() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motionl
50 method), 40
goalkeeper_old_style_main_cycle() (SAM-
PLE_TEAM.Soccer.strategy.Player — method), L
S0) load_json() (blurrer.Blurrer method), 56
goalPostRadius (in module SAM- loc) (blurrer.Blurrer method), 56
PLE_TEAM.Soccer.Motion.path_planning), Local (class in SAM-
44 PLE_TEAM.Soccer.Localisation.class_Local),
goto_Center() (SAM- 46
PLE_TEAM.Soccer.strategy.GoalKeeper localisation_Complete() (SAM-
method), 41 PLE _TEAM.Soccer.Localisation.class_Local.Local
group_obstacles() (SAM- method), 46
PLE _TEAM.Soccer.Localisation.class_Local. Loccilo calisation_Motion() (SAM-
method), 46 PLE_TEAM.Soccer.Motion.class_Motion_real. Motion_real
H method), 42
Log (class in SAMPLE_TEAM.main_pb), 53
head_Return() (SAM- LOGGING_LEVEL (in module SAMPLE_TEAM.main_pb),
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real 53
method), 42
head_Up () (SAMPLE_TEAM. Soccer.Motion.class_Motion_IMal.Motion_real
method), 42 main() (in module SAMPLE_TEAM.main_pb), 53
Main_Panel (class in SAMPLE_TEAM.main_pb), 53
I main_procedure () (in module SAM-
import_strategy_data() (SAM- PLE_TEAM.main_pb), 53
PLE TEAM.Soccer.Localisation.class_Glob.Globmain_procedure () (SAM-
method), 46 PLE_TEAM.main_pb.Main_Panel method),
import_strategy_data() (SAM- 53
PLE_TEAM.Soccer.Motion.path_planning.Glob message_from_file() (mes-
method), 45 sage_manager.MessageManager method),
imu_activation() (SAM- 58
PLE_TEAM.Soccer.Motion.class_Motion_WebotsmBBSdgeonariager
method), 41 module, 57
imu_body_yaw() (SAM- MessageManager (class in message_manager), 57
PLE TEAM.Soccer.Motion.class_Motion.Motion Inodul e
method), 40 blurrer, 56
init_gcreceiver() (in module SAM- communication_manager_robokit, 53
PLE_TEAM.launcher_pb), 51 message_manager, 57
InitUIQ (SAMPLE_TEAM.main_pb.Main_Panel SAMPLE_TEAM. launcher_pb, 51
method), 53 SAMPLE_TEAM.main_pb, 52
internal_tangent_line() (SAM- SAMPLE_TEAM.Soccer.Localisation, 46
PLE_TEAM . Soccer.Motion.path_planning.PathPlan ~SAMPLE_TEAM.Soccer.Localisation.class_Glob,
method), 45 46
intersection_circle_segment_and_circle() SAMPLE_TEAM. Soccer.Localisation.class_Local,
(SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan 46
method), 45 SAMPLE_TEAM. Soccer.Motion, 39
intersection_line_segment_and_circle() (SAM- SAMPLE_TEAM. Soccer.Motion.ball_Approach_calc,
PLE_TEAM.Soccer.Motion.path_planning. PathPlan 40
method), 44 SAMPLE_TEAM. Soccer.Motion.ball_Approach_Steps_Seq,
39

Index 63

ELSIROS, Release 0.0.1

SAMPLE_TEAM. Soccer.Motion.class_Motion, P
40

;iarse_answer_message O (mes-
SAMPLE_TEAM. Soccer.Motion.class_Motion_real, sage_manager.MessageManager method)
42 = ’
58
SAMPLE_TEAM. Soccer.Motion. ClaSS—MOt1°n—WebB§fsg_Bmessage() (message_manager.MessageManager
41 . static method), 58
SAMPLE_TEAM.Soccer.Motion. CompUte—Alpha—V?’path_calc() (SAMPLE_TEAM.Soccer.Motion.path_planning.PathPlan
42 method), 45
SAMPLE_TEAM.Soccer.Motion.motion_slots, path_calc_optimum() (SAM-
39 PLE_TEAM.Soccer.Motion.path_planning. PathPlan
SAMPLE_TEAM. Soccer.Motion.path_planning, method), 45
43 PathPlan (class in SAM-
SAMPLE_TEAM.Soccer.strategy, 47 PLE_TEAM.Soccer.Motion.path_planning),
Motionl (class in SAM- 44
PLE_TEAM.Soccer.Motion.class_Motion), Pause (class in SAMPLE_TEAM.main_pb), 53
40 pause (in module SAMPLE_TEAM.main_pb), 53
Motion_real (class in SAM- pause_in_ms () (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real), PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
. 4.2) method), 41
Motion_sim (class mn SAM- penalty_Goalkeeper_main_cycle() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB), PLE_TEAM.Soccer.strategy.Player — method)
41 - ;
50
move_head() (SAMPLE_TEAM.Soccer.Motion.class_MotiMql:@‘i shBdetiogaiin cycle() (SAM-
method), 41 PLE_TEAM.Soccer.strategy.Player — method),
N 50
play_game() (SAMPLE_TEAM.Soccer.strategy.Player
near_distance_ball_approach_and_kick() (SAM- method), 50
PLE_TEAM.Soccer.Motion.class_Motion_real Magioay r8e/ft_Motion_Slot () (SAM-
method), 42 PLE_TEAM.Soccer.Motion.class_Motion.Motionl
near_distance_omni_motion() (SAM- method), 40
PLE_TEAM.Soccer.Motion.class_Motion_real. M®ioayeediclass in SAMPLE_TEAM.Soccer.strategy), 49
method), 42 player_super_cycle() (in module SAM-
norm_yaw() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motionl PLE _TEAM.launcher - pb), 51
method), 40
norm_yaw() (SAMPLE_TEAM.Soccer.Motion.path _plannir@PathPlan
method), 45 quaternion_to_euler_angle() (SAM-
norm_yaw() (SAMPLE_TEAM.Soccer.strategy.Player PLE _TEAM.Soccer.Motion.class_Motion.Motionl
method), 50 method), 40
normalize_rotation() (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Rq),
39
. . read_head_imu_euler_angle() (SAM-
normalize_rotation() (SAM-
PLE _TEAM.Soccer.Motion.class_Motion_real Motion_real ZI;tEh_OZI)EAK Soccer. Motion.class_Motion_Webots_PB.Motion_sir
normaliz”;eth;’v‘%“ (sap. Tead-imubody_yawO (SAM-
=y PLE _TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir

PLE _TEAM.Soccer.Localisation.class_Local.Local

method), 46 met_hod),.4l

number_0f_Cycles_count () (SAM- read_Localization_marks() o (SAM-
PLE_TEAM.Soccer.Motion.path_planning. PathPlan PLi‘Z?Afg' Soccer.Localisation.class_Local.Local

method),

method), 43 RedirectText (class in SAMPLE_TEAM.main_pb), 53

O refresh_Orientation() (SAM-

] PLE TEAM.Soccer.Motion.class_Motion.Motionl
objects() (blurrer.Blurrer method), 56 method), 40

observation() (blurrer.Blurrer method), 56

64 Index

ELSIROS, Release 0.0.1

rotation_test_main_cycle() (SAM- method), 48
PLE_TEAM.Soccer.strategy.Player — method), scenario_B1() (SAM-
50 PLE_TEAM.Soccer.strategy.GoalKeeper
roundAboutRadiusIncrement (in module SAM- method), 48
PLE_TEAM.Soccer.Motion.path_planning), scenario_B2() (SAM-
44 PLE_TEAM.Soccer.strategy.GoalKeeper
run() (communication_manager_robokit. CommunicationManager method), 48
method), 55 scenario_B3() (SAM-
run_test_main_cycle() (SAM- PLE_TEAM.Soccer.strategy.GoalKeeper
PLE_TEAM.Soccer.strategy.Player — method), method), 49
50 scenario_B4() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
S method), 49
SAMPLE_TEAM. launcher_pb see_ball_confirmation() (SAM-

module, 51
SAMPLE_TEAM.main_pb
module, 52
SAMPLE_TEAM.Soccer.Localisation
module, 46
SAMPLE_TEAM. Soccer.Localisation.class_Glob
module, 46
SAMPLE_TEAM. Soccer.Localisation.class_Local
module, 46
SAMPLE_TEAM. Soccer.Motion

PLE _TEAM.Soccer.Motion.class_Motion_real. Motion_real
method), 42

seek_Ball_In_Frame() (SAM-
PLE TEAM.Soccer.Motion.class_Motion_real Motion_real
method), 42

seek_Ball_In_Pose() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real.Motion_real
method), 42

send_angles_to_servos() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir

module, 39 method), 41
SAMPLE_TEAM. Soccer.Motion.ball_Approach_calc send_servos() (communica-
module, 40 tion_manager_robokit. CommunicationManager
SAMPLE_TEANM. Soccer.Motion.ball_Approach_Steps_Seq method), 55
module, 39 ShowMessagel () (SAM-
SAMPLE_TEAM. Soccer.Motion.class_Motion PLE_TEAM.main_pb.Main_Panel method),
module, 40 53
SAMPLE_TEAM. Soccer.Motion.class_Motion_real ShowlMessage2() (SAM-
module, 42 PLE_TEAM.main_pb.Main_Panel method),
SAMPLE_TEAM. Soccer.Motion.class_Motion_Webots_PB 53
module, 41 sidestep_test_main_cycle() (SAM-
SAMPLE_TEAM. Soccer.Motion.compute_Alpha_v3 PLE_TEAM.Soccer.strategy.Player — method),
module, 42 50
SAMPLE_TEAM. Soccer.Motion.motion_slots sim_Get_Ball_Position() (SAM-
module, 39 PLE _TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
SAMPLE_TEAM. Soccer.Motion.path_planning method), 41
module, 43 sim_Get_Obstacles() (SAM-
SAMPLE_TEAM. Soccer.strategy PLE _TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
module, 47 method), 41

scenario_A1(Q)
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_A2()
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_A3(Q)
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 48

scenario_A4(Q)
PLE_TEAM.Soccer.strategy.GoalKeeper

(SAM-

(SAM-

(SAM-

(SAM-

sim_Get_Robot_Position() (SAM-
PLE _TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
method), 41

sim_Progress() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
method), 41

sim_Start () (SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB..
method), 41

sim_Trigger() (SAM-
PLE _TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sir
method), 41

Index

65

ELSIROS, Release 0.0.1

simulateMotion() (SAM- method), 40
PLE_TEAM.Soccer.Motion.class_Motion_WebotswBBdW oRahl siim_Pose () (SAM-
method), 41 PLE_TEAM.Soccer.Motion.class_Motion_real. Motion_real

SIMULATION (in module SAMPLE_TEAM.main_pb), 53 method), 42

square_equation() (SAM- write() (SAMPLE_TEAM.main_pb.RedirectText
PLE_TEAM.Soccer.Motion.path_planning. PathPlan method), 53
method), 45

step () (blurrer.Blurrer method), 56

steps() (in module SAM-

PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq),
39
T

team_1_data (in module SAMPLE_TEAM.main_pb), 53
team_2_data (in module SAMPLE_TEAM.main_pb), 53

time_sleep() (communica-
tion_manager_robokit. CommunicationManager
method), 54

turn_Face_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.Forward method),
49

turn_Face_To_Guest() (SAM-
PLE_TEAM . Soccer.strategy.Forward_Vector_Matrix
method), 49

turn_Face_To_Guest() (SAM-
PLE_TEAM.Soccer.strategy.GoalKeeper
method), 47

turn_To_Course() (SAM-
PLE_TEAM.Soccer.Motion.class_Motion_real. Motion_real
method), 42

U

update_consistency () (blurrer.Blurrer method), 56
uprightRobotRadius (in module SAM-
PLE_TEAM.Soccer.Motion.path_planning),

44

uprint () (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_calc),
40

uprint () (in module SAM-
PLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq),
39

W

wait_for_step() (SAM-
PLE TEAM.Soccer.Motion.class_Motion_Webots_PB.Motion_sim
method), 41

walk_Cycle() (SAMPLE_TEAM.Soccer.Motion.class_Motion.Motionl
method), 40

walk_Final_Pose() (SAM-
PLE TEAM.Soccer.Motion.class_Motion.Motionl
method), 40

walk_Initial_Pose() (SAM-

PLE _TEAM.Soccer.Motion.class_Motion.Motionl

66 Index

	ELSIROS Intro
	History of Junior Humanoid Soccer games
	The field
	The ball
	The Robots
	Bioloid type with added camera head and computer
	Robokit - a robot designed in MIPT with using Kondo servomotors from Japan

	Robot programming hints
	Rules
	Robot Design
	API
	SAMPLE_TEAM.Soccer.Motion
	Subpackages
	SAMPLE_TEAM.Soccer.Motion.motion_slots

	Submodules
	SAMPLE_TEAM.Soccer.Motion.ball_Approach_Steps_Seq
	Module Contents
	Functions

	SAMPLE_TEAM.Soccer.Motion.ball_Approach_calc
	Module Contents
	Functions

	SAMPLE_TEAM.Soccer.Motion.class_Motion
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Motion.class_Motion_Webots_PB
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Motion.class_Motion_real
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Motion.compute_Alpha_v3
	Module Contents
	Classes
	Attributes

	SAMPLE_TEAM.Soccer.Motion.path_planning
	Module Contents
	Classes
	Attributes

	SAMPLE_TEAM.Soccer.Localisation
	Submodules
	SAMPLE_TEAM.Soccer.Localisation.class_Glob
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.Localisation.class_Local
	Module Contents
	Classes

	SAMPLE_TEAM.Soccer.strategy
	Module Contents
	Classes

	SAMPLE_TEAM.launcher_pb
	Module Contents
	Functions

	SAMPLE_TEAM.main_pb
	Module Contents
	Classes
	Functions
	Attributes

	communication_manager_robokit
	Module Contents
	Classes

	blurrer
	Module Contents
	Classes

	message_manager
	Module Contents
	Classes

	Python Module Index
	Index

